自回归模型索引帖
#refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content: ref_content, ...
自回归模型概览
【摘要】 【原文】 Murphy, Kevin P. Chapter 22 of Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. probml.ai. 【参考】 PixelCNN++: Improving the PixelCNN with Discretized Logistic Mi\boldsymbol{x}_{t}ure Likelihood and Other Modifications https://github.com/openai/pixel-cnn 1 概述根据概率链式法则,我们可以写出 T 个变量上的任意联合分布如下: $$p\left(\boldsymbol{x}_{1: T}\right)=p\left(\boldsymbol{x}_1\right) p\left(\boldsymbol{x}_2 \mid \boldsymbol{x}_1\right) p\left(\boldsymbol{x}_3 \mid...