深度神经网络的优化技巧
深度神经网络的优化技巧引起:剑启郁兰 2019-08-05 21:36:30 1、 深度神经网络主要要素结构 2、神经网络优化技巧框图 3、数据预处理部分 4、权重初始化部分 5、批量归一化部分 6、优化方法部分 7、激活函数部分 8、正则化和超参设置部分 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum =...
➃ 线性回归模型:样条回归
【摘要】 样条回归【原文】【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》 p{text-indent:2em;2} 1 样条回归 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content =...
④ 线性回归模型:套索回归
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。 套索回归 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum =...
④ 线性回归模型:岭回归
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。 岭回归 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum =...
④ 线性回归模型:最小二乘线性回归
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。 样条回归 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum =...
③ 逻辑斯谛回归
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。 p{text-indent:2em;2} 线性回归模型在上一章中,我们使用输入变量的线性组合来预测输出变量的平均值。我们假设后者为高斯分布。在许多情况下都可以使用高斯分布,但对于其他许多情况,选择不同的分布可能更明智;当我们用 $t$ 分布替换高斯分布时,我们已经看到了一个这样的例子。在本章中,我们将看到更多使用高斯分布以外分布的明智例子。正如我们将了解到的,存在一个通用的主题或模式,可将线性模型推广到许多问题。在本章中,我们将探讨: 广义线性模型 Logistic回归和逆链接函数 简单Logistic回归 多元Logistic回归 Softmax函数和多项Logistic回归 Poisson回归 零膨胀Poisson回归 4.1...
➁ 朴素贝叶斯分类器
朴素贝叶斯分类器线性判别分析 LDA (Linear Discriminant Analysis) 又称为 Fisher 线性判别,是一种监督学习的降维技术,也就是说它的数据集的每个样本都是有类别输出的,这点与 PCA(无监督学习)不同。LDA 在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理。 p{text-indent:2em;2} 1. LDA 的思想LDA 的思想是:最大化类间均值,最小化类内方差。意思就是将数据投影在低维度上,并且投影后同种类别数据的投影点尽可能的接近,不同类别数据的投影点的中心点尽可能的远。 我们先看看最简单的情况。假设我们有两类数据...
➀ 线性判别分析
线性判别分析 LDA (Linear Discriminant Analysis) 又称为 Fisher 线性判别,是一种监督学习的降维技术,也就是说它的数据集的每个样本都是有类别输出的,这点与 PCA(无监督学习)不同。LDA 在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理。 p{text-indent:2em;2} 1. LDA 的思想LDA 的思想是:最大化类间均值,最小化类内方差。意思就是将数据投影在低维度上,并且投影后同种类别数据的投影点尽可能的接近,不同类别数据的投影点的中心点尽可能的远。 我们先看看最简单的情况。假设我们有两类数据...