🔥 GeoAI 相关论文索引帖
〖摘 要〗 个人用于整理大规模点参考数据时空统计分析方法的汇总帖,大致分为克里金法和贝叶斯建模、高斯过程及其推断理论、大 n 问题及其对策、并行化策略和方法、与深度学习的结合等部分。目前主要兴趣点在大规模点参考数据的高效计算方法和统计深度学习方面。 1 概览或综述2 位置嵌入3 社会感知4 遥感数据5 地图数据6 位置物联网7 街景数据8 地理知识图谱 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel =...
格子克里金法(LatticeKrig)
【摘 要】 我们开发了一个多分辨率模型来预测基于不规则间隔观测的二维空间场。每个分辨率级别的径向基函数都是使用 Wendland 紧支撑的相关函数构建,“结点” 排列在矩形网格上。每个更精细级别的网格以两倍率增加,并且基函数按比例缩放以具有恒定的重叠。在每个分辨率级别与基函数关联的权重系数,根据高斯马尔可夫随机场 (GMRF) 来分布,并充分利用基被组织为网格的事实。几个数值示例和分析结果表明,该方案可以很好地逼近标准协方差函数,例如 Matern,并且还具有适应更复杂形状的灵活性。该模型的另一个重要特征是可以应用于大型空间数据集的统计推断,因为计算中的关键矩阵是稀疏的。计算的高效性适用于似然计算和空间预测。 【原 文】 Nychka, D. et al. (2015) ‘A multiresolution gaussian process model for the analysis of large spatial datasets’, Journal of Computational and Graphical Statistics, 24(2), pp....
海量空间数据集的多分辨率近似(MRA )
【摘 要】 卫星和飞机上的自动传感仪器能够收集大空间区域空间场的大量高分辨率观测数据。如果可以有效地利用这些数据集,它们可以为各种问题提供新的见解。然而,传统的空间统计技术(如克里金法)在计算上对于大数据集不可行。我们提出了在空间不规则位置观测到的高斯过程的多分辨率近似 (M-RA)。 M-RA 过程被指定为多个空间分辨率级别的基函数的线性组合,它可以捕获从非常精细到非常大尺度的空间结构。自动选择基函数来近似给定的协方差函数,该协方差函数可以是非平稳的。所有涉及 M-RA 的计算,包括参数推断和预测,对于海量数据集都是高度可扩展的。至关重要的是,推断算法也可以并行化,以充分利用大型分布式内存计算环境。在使用模拟数据和大型卫星数据集进行比较时,M-RA 优于相关的最新技术 【原 文】 Katzfuss, M. (2017) ‘A Multi-Resolution Approximation for Massive Spatial Datasets’, Journal of the American Statistical Association, 112(517), pp....
利用变分高斯过程学习空间模式
【摘 要】 介绍了专门用于空间数据的变分高斯过程 (VGP) 模型,利用了机器学习领域的最新进展。该模型是模块化和可定制的,能够处理关于数据的不同假设。本文工作侧重于多元稳健回归,使用 $ε$ 不敏感损失函数的自适应。 变分高斯过程使端到端建模成为可能:正态分值变换、空间模式检测和预测。本文提出了一种处理大型数据集的方法,并给出了可用的开源实现。 【原 文】 Gonçalves, Í.G., Guadagnin, F. and Cordova, D.P. (2022) ‘Learning spatial patterns with variational Gaussian processes: Regression’, Computers & Geosciences, p. 105056. Available at: https://doi.org/10.1016/j.cageo.2022.105056. 1 引言高斯过程 (Gaussian Process,GP)...
🔥 可扩展高斯过程综述
【摘 要】大数据带来的海量信息以及不断发展的计算机硬件鼓励了机器学习社区的成功案例。同时,它对高斯过程回归 (GPR)...
🔥 空间大数据组织管理方法索引帖
〖摘 要〗 个人用于整理时空大数据引擎原理、方法及其实现的汇总帖,大致分为综述、原理方法、工程实践三个板块。 一、 综述 《空间大数据引擎综述文章:大数据时代的空间数据引擎》 二、原理方法 空间索引方法综述: 《基于空间填充曲线的降维方法》: 介绍如何利用 Z 序 Hillbert 曲线等空间填充曲线方法,实现多维空间的降维索引。 《空间填充曲线的聚簇性分析》: 从理论上分析了空间填充曲线的聚簇性,表明空间填充曲线无法做到任意位置的高聚簇性。 《扩展 Z 序曲线(XZ-Ordering)索引》: 德国慕尼黑大学教授提出的一种有缝有叠的剖分和填充曲线方式,可有效解决跨剖分面片的单编码空间覆盖问题。 三、工程实践 《全文数据库中多维数据检索效率的提升方法》: 基于可分布式部署的传统关系型数据库或全文数据库,其实现机制和单机数据库区别不大,并行机制来自于分布式数据库本身。本文主要介绍了全文数据库(关系型数据库类似)的实现机制,以及空间索引在其中的结合方法。典型代表如:Parallel Secondo、Paradise、 Sphinx 等。此外,专门面向科学数据的...
🔥 大规模面元数据统计分析方法索引帖
〖摘 要〗 暂时没有启动阅读工作,待整理。 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { ...
高斯场和非高斯场的随机偏微分方程方法:10 年回顾
【摘 要】 高斯过程和随机场有着悠久的历史,包含了表示空间和时空相关结构的很多方法,例如:协方差函数、谱表示、再生核希尔伯特空间、基于图的模型等。本文介绍了随机偏微分方程方法(SPDE)如何通过 Hilbert 空间投影,将 Matern 协方差模型与其中几种方法建立起联系,并且每种联系在不同情况下都非常有用。除了主要思想的概述之外,本文还讨论了一些重要的扩展、理论、应用和其他新发展。这些方法包括:马尔可夫模型、非马尔可夫模型、非高斯随机场、非平稳场、任意流形上的时空场等,以及实际计算需要考虑的因素。 【原 文】 Lindgren, F., Bolin, D. and Rue, H. (2022) ‘The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running’, Spatial Statistics, 50, p. 100599. Available at: https://doi.org/10.1016/j.spasta.2022.100599. 1...
高斯过程预测的 Vecchia 近似
〖摘 要〗 高斯过程 (GP) 是用于地理空间分析、非参数回归和机器学习的高度灵活的函数估计器,但它们在计算上对大型数据集不可行。 高斯过程的 Vecchia 近似已被用于快速估算参数推断的似然。本文研究了在已观测和未观测位置处进行空间预测时的 Vecchia 近似,包括在大型位置集上获得联合预测分布。我们考虑了用于高斯过程预测的通用 Vecchia 框架,其中包含一些新的和已有的特例。我们从理论和数值上研究了这些方法的准确性和计算特性,并且证明了新方法表现出在空间位置总数上的线性计算复杂性。我们表明,框架内的某些选择会对不确定性量化和计算成本产生强烈影响,从而就哪些方法最适合各种设置提出具体建议。我们还将方法应用于叶绿素荧光卫星数据集,表明新方法比现有方法更快或更准确,并削减了预测结果图中不符合实际的伪影。 〖原 文〗 Katzfuss, M. et al. (2020) ‘Vecchia approximations of Gaussian-process predictions’, Journal of Agricultural, Biological and...
Vecchia 近似似然法的通用框架
【摘要】 高斯过程通常用作函数、时间序列和空间场的模型,但它们对大型数据集在计算上不可行。着眼于高斯过程加上加性噪声项的数据建模典型设置,本文提出了 Vecchia (1988) 方法的泛化作为高斯过程近似的框架。我们展示的通用 Vecchia 方法包含了现有许多流行的高斯过程近似特例,并且允许在统一框架内比较不同方法。通过有向无环图模型,我们确定了推断所需矩阵的稀疏性,从而对计算特性有了新的认识。基于这些结果,我们提出了一种新的稀疏通用 Vecchia 近似,它确保了大型空间数据集的计算可行性,但可以产生比原始 Vecchia 方法近似精度更好的结果。文中提供了几个理论结果并进行了数值比较。 【原文】 Katzfuss, M. and Guinness, J. (2021) ‘A general framework for Vecchia approximations of Gaussian processes’, Statistical Science, 36(1). Available at: https://doi.org/10.1214/19-STS755. 1...