[1] Buchanan B G. A(Very)Brief History of Artificial Intelligence[J]. AI Mag,2005,26(4):53‐60
[2] Smith T R. Artificial Intelligence and Its Applicability to Geographical Problem Solving [J]. Prof Geogr,1984,36(2):147‐158
[3] Couclelis H. Artificial Intelligence in Geography: Conjectures on the Shape of Things to Come[J]. ProfGeogr,1986,38(1):1‐11
[4] Openshaw S. Artificial Intelligence in Geography [M]. Chichester,UK:John Wiley & Sons Inc, 1997
[5] Hinton G E,Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006,313(5 786):504‐507
[6] Lecun Y,Bengio Y,Hinton G. Deep Learning[J]. Nature,2015,521(7 553):436‐444
[7] Janowicz K,Gao S,McKenzie G,et al. GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond [J]. Int J Geogr InfSci,2020,34(4):625‐636
[8] Reichstein M,Camps-Valls G,Stevens B,et al. Deep Learning and Process Understanding for DataDriven Earth System Science[J]. Nature,2019, 566(7 743):195‐204
[9] Mao H,Hu Y,Kar B,et al. GeoAI 2017 Workshop Report:The 1st ACM SIGSPATIAL International Workshop on GeoAI[R]. Redondo Beach, CA,USA,2016
[10]Hu Y,Gao S,Newsam S D,et al. GeoAI 2018 Workshop Report:The 2nd ACM SIGSPATIAL International Workshop on GeoAI[R]. WA,USA, 2018
[11] Gao S. AI for Geographic Knowledge Discovery [R]. GeoAI 2019 Workshop Report: The 3nd ACM SIGSPATIAL International Workshop on GeoAI,WA,USA,2019
[13]Wachowicz M,Gao S. Machine Learning Approaches[M/OL]//Wilson J. Geogr Inf Sci(Technol Body Knowl 2nd Quart. https://gistbok. ucgis. org/ bok-topics/machine-learning-approaches,2020
[14] Goodchild M F. Issues in Spatially Explicit Modeling [C]. LUCC Report and Review of an International Workshop,Irvine,California,USA,2011
[15] Yan B ,Janowicz K ,Mai G,et al. A Spatially Explicit Reinforcement Learning Model for Geographic Knowledge Graph Summarization[J]. Trans GIS, 2019,23(3):620‐640
[16] Yan B ,Janowicz K ,Mai G,et al. Xnet+sc:Classifying Places Based on Images by Incorporating Spatial Contexts[C]. 10th International Conference on Geographic Information Science(GIScience 2018), Melbourne,Australia,2018
[17] Zammit-Mangion A,Ng T L G,Vu Q,et al. Deep Compositional Spatial Models[OL]. https://arxiv. org/abs/1906. 02840,2019
[18] Klemmer K ,Koshiyama A ,Flennerhag S. Augmenting Correlation Structures in Spatial Data Using Deep Generative Models[OL]. https://arxiv. org/ abs/1905. 09796,2019
[19] Rao J,Gao S,Kang Y,et al. LSTM-TrajGAN:A Deep Learning Approach to Trajectory Privacy Protection[C]. Leibniz International Proceedings in Informatics,Poznań,Poland,2020
[20] Courville B A,Vincent P. Representation Learning: A Review and New Perspectives[J]. IEEE Trans Pattern Anal Mach Intell,2013,35(8):1 798‐1 828
[21]Yan B ,Mai G,Janowicz K,et al. From ITDL to Place2Vec—Reasoning About Place Type Similarity and Relatedness by Learning Embeddings from Augmented Spatial Contexts[J]. GIS Proc ACM Int Symp Adv Geogr InfSyst,2017,11:1-10
[22]Yao Y,Li X,Liu X P,et al. Sensing Spatial Distribution of Urban Land Use by Integrating Points-ofInterest and Google Word2Vec Model[J]. Int J Geogr InfSci,2017,31(4):825‐848
[23] Liu K,Gao S,Qiu P,et al. Road2Vec:Measuring Traffic Interactions in Urban Road System from Massive Travel Routes[J]. ISPRS Int J Geo ‐ Infor⁃ mation,2017,6(11):321
[24] Crivellari A,Beinat E. From Motion Activity to Geo-Embeddings:Generating and Exploring Vector Representations of Locations,Traces and Visitors through Large-Scale Mobility Data[J]. ISPRS Int J Geo‐Information,2019,8(3):134
[25] Jean N,Wang S,Samar A,et al. Tile2Vec:Unsupervised Representation Learning for Spatially Distributed Data[C]. The AAAI Conference on Artificial Intelligence,Hawaii,USA,2019
[26]Mai G,Janowicz K,Yan B,et al. Multi-Scale Representation Learning for Spatial Feature Distributions Using Grid Cells[C]. International Conference on Learning Representations,Addis Ababa,Ethiopia,2019
[27] Zhu A,Lu G,Liu J,et al. Spatial Prediction Based on Third Law of Geography[J]. Ann GIS,2018,24 (4):225-240
[28] Lam N S N. Spatial Interpolation Methods:A Review[J]. Am Cartogr,1983,10(2):129‐150
[29]Gong Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J]. Geomatics and Information Science ofWuhan University,2018,43(12):1 7881 796(龚健雅 . 人工智能时代测绘遥感技术的发展 机遇与挑战[J]. 武汉大学学报·信息科学版, 2018,43(12):1 788-1 796)
[30] Liu Y,Liu X,Gao S,et al. Social Sensing:A New Approach to Understanding Our Socioeconomic Environments[J]. Ann Assoc Am Geogr,2015,105 (3):512‐530
[31] Liu Yu. Revisiting Several Basic Geographical Concepts:A Social Sensing Perspective[J]. Acta Geo⁃ graphica Sinica,2020,71(4):564‐575(刘瑜 . 社会 感知视角下的若干人文地理学基本问题再思考 [J]. 地理学报,2020,71(4):564‐575)
[32]Veres M,Moussa M. Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends[J]. IEEE Trans Intell Transp Syst,2020, 21(8):3 152-3 168
[33] Zhu D,Cheng X,Zhang F,et al. Spatial Interpolation Using Conditional Generative Adversarial Neural Networks[J]. Int J Geogr InfSci,2020,34(4): 735‐758
[34] Li M,Lu F,Zhang H,et al. Predicting Future Locations of Moving Objects with Deep Fuzzy-LSTM Networks[J]. Transp A Transp Sci,2020,16(1): 119‐136
[35] Bao Y,Huang Z,Li L,et al. A BiLSTM-CNN Model for Predicting Users’Next Locations Based on Geotagged Social Media[J]. Int J Geogr Inf Sci, 2020,DOI:10. 1080/13658816. 2020. 1808896
[36] Liang Y,Gao S,Cai Y,et al. Calibrating the Dynamic Huff Model for Business Analysis Using Location Big Data[J]. Trans GIS,2020,24(3):681 ‐703
[37] Xing X,Huang Z,Cheng X M,et al. Mapping Human Activity Volumes Through Remote Sensing Imagery[J]. IEEE J Sel Top Appl Earth Obs Re⁃ mote Sens,2020,13:5 652-5 668
[38] Pourebrahim N,Sultana S,Thill J-C,et al. Enhancing Trip Distribution Prediction with Twitter Data:Comparison of Neural Network and Gravity Models[C]. The 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery,Seattle,WA,USA,2018
[39] Yao X,Gao Y,Zhu D,et al. Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks[J]. IEEE Trans Intell Transp Syst,2020 (99):1–11
[40]Murphy J,Pao Y,Haque A. Image-Based Classification of GPS Noise Level Using Convolutional Neural Networks for Accurate Distance Estimation[C]. The 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery, Redondo Beach,CA,USA,2017
[41] Zhang F,Wu L,Zhu D,et al. Social Sensing from Street-Level Imagery:A Case Study in Learning Spatio-Temporal Urban Mobility Patterns[J]. IS⁃ PRS J Photogramm Remote Sens,2019,153:48‐58
[42] Zhang Y,Cheng T. Graph Deep Learning Model for Network-Based Predictive Hotspot Mapping of Sparse Spatio-Temporal Events[J]. Comput Envi⁃ ron Urban Syst,2020,79:101 403
[43] Ren Y,Cheng T,Zhang Y. Deep Spatio-Temporal Residual Neural Networks for Road-Network-Based Data Modeling[J]. Int J Geogr Inf Sci,2019,33 (9):1 894‐1 912
[44] Zhao L,Song Y J,Zhang Z,et al. T-GCN:A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Trans Intell Transp Syst, 2020,21(9):3 848‐3 858
[45] Liu Yu,Zhan Zhaohui,Zhu Di,et al. Incorporating Multi-source Big Geo-Data to Sense Spatial Heterogeneity Patterns in an Urban Space[J]. Geomatics and Information Science of Wuhan University, 2018,43(3):327-335(刘瑜,詹朝晖,朱递,等[J]. 集成多源地理大数据感知城市空间分异格局[J]. 武汉大学学报·信息科学版,2018,43(3):327‐335)
[46] Zhang F,Zu J Y,Hu M Y,et al. Uncovering Inconspicuous Places Using Social Media Check-Ins and Street View Images[J]. Comput Environ Ur⁃ ban Syst,2020,81:101 478
[47]Helbich M,Yao Y,Liu Y,et al. Using Deep Learning to Examine Street View Green and Blue Spaces and Their Associations with Geriatric Depression in Beijing,China[J]. Environ Int,2019,126: 107-117
[48] Cao R,Tu W,Yang C X,et al. Deep LearningBased Remote and Social Sensing Data Fusion for Urban Region Function Recognition[J]. ISPRS J Photogramm Remote Sens,2020,163:82-97
[49] Ye C,Zhang F,Mu L,et al. Urban Function Recognition by Integrating Social Media and Street-Level Imagery[J]. Environ Plan B Urban Anal City Sci, 2020,DOI:10. 1177/2399808320935467
[50] Law S,Seresinhe C I,Shen Y,et al. Street-FrontageNet:Urban Image Classification Using Deep Convolutional Neural Networks[J]. Int J Geogr Inf Sci, 2020,34(4):681-707
[51] Li Deren,Wang Mi,Shen Xin,et al. From Earth Observation Satellite to Earth Observation Brain[J]. Geomatics and Information Science of Wuhan University,2017,42(2):143-149(李德仁,王密, 沈欣,等 . 从对地观测卫星到对地观测脑[J]. 武汉 大学学报·信息科学版,2017,42(2):143-149)
[52] Scott G J,England M R,Starms W A,et al. Training Deep Convolutional Neural Networks for Land-Cover Classification of High-resolution Imagery[J]. IEEE Geosci Remote Sens Lett,2017,14(4): 549-553
[53]Huang B,Zhao B,Song Y. Urban Land-Use Mapping Using a Deep Convolutional Neural Network with High Spatial Resolution Multispectral Remote Sensing Imagery[J]. Remote Sens Environ,2018, 214:73-86
[55] Yuan Q Q,Shen H F,Li T W,et al. Deep Learning in Environmental Remote Sensing:Achievements and Challenges[J]. Remote Sens Environ,2020, 241:111 716
[56] Yuan Q,Zhang Q,Li J,et al. Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network[J]. IEEE Trans Geosci Remote Sens,2018,57(2):1 2051 218
[57] Zhang Q,Yuan Q,Zeng C,et al. Missing Data Reconstruction in Remote Sensing Image with a Unified Spatial-Temporal-Spectral Deep Convolutional Neural Network[J]. IEEE Trans Geosci Remote Sens,2018,56(8):4 274–4 288
[58]Wang Jiaoyao. The Times of AI:Where Cartography Comes From and Goes to[C]. The 3rd National Conference on Cartography Theory and Method, Guangzhou,China,2018(王家耀 . 人工智能时代: 地图学从哪里来到哪里去[C]. 第三届全国地图学 理论与方法研讨会,广州,2018)
[59] Li W,Hsu C Y. Automated Terrain Feature Identification from Remote Sensing Imagery:A Deep Learning Approach[J]. Int J Geogr Inf Sci,2020, 34(4):637-660
[60] Xie Y,Cai J,Bhojwani R,et al. A Locally-Constrained Yolo Framework for Detecting Small and Densely-Distributed Building Footprints[J]. Int J Geogr InfSci,2020,34(4):777-801
[61] Yan X,Ai T,Yang M,et al. Graph Convolutional Autoencoder Model for the Shape Coding and Cognition of Buildings in Maps[J]. Int J Geogr Inf Sci, 2020,DOI:10. 1080/13658816. 2020. 1768260
[62] Chiang Y Y,Knoblock C A. Recognizing Text in Raster Maps[J]. Geoinformatica,2015,19(1): 1-27
[63] Duan W,Chiang Y Y,Leyk S,et al. Automatic Alignment of Contemporary Vector Data and Georeferenced Historical Maps Using Reinforcement Learning[J]. Int J Geogr Inf Sci,2020,34(4): 824-849
[64] Kang Y,Gao S,Roth R E. Transferring Multiscale Map Styles Using Generative Adversarial Networks [J]. Int J Cartogr,2019,5(2-3):115-141
[65]Huang X,Xu D,Li Z,et al. Translating Multispectral Imagery to Nighttime Imagery via Conditional Generative Adversarial Networks[OL]. https://arxiv. org/pdf/2001. 05848v1. pdf,2019
[67] Ganguli S,Garzon P,Glaser N. Geogan:A Conditional Gan with Reconstruction and Style Loss to Generate Standard Layer of Maps from Satellite Images[OL]. https://arxiv. org/pdf/1902. 05611. pdf,2019
[68] Xu C,Zhao B. Satellite Image Spoofing:Creating Remote Sensing Dataset with Generative Adversarial Networks (Short Paper)[C]. 10th International Conference on Geographic Information Science(GIScience 2018),Melbourne,Australia,2018
[69] Touya G,Zhang X,Lokhat I. Is Deep Learning the New Agent for Map Generalization?[J]. Int J Car⁃ togr,2019,5(2-3):142-157
[70] Feng Y,Thiemann F,Sester M. Learning Cartographic Building Generalization with Deep Convolutional Neural Networks[J]. ISPRS Int J Geo-Infor⁃ mation,2019,8(6):258
[71] Goodchild M F,Hill L L. Introduction to Digital Gazetteer Research[J]. Int J Geogr Inf Sci,2008, 22(10):1 039-1 044
[72]Hu Y. Geo ‐Text Data and Data ‐Driven Geospatial Semantics[J]. Geogr Compass,2018,12(11): e12404
[73] Gao S,Li L,Li W,et al. Constructing Gazetteers from Volunteered Big Geo-Data Based on Hadoop[J]. Comput Environ Urban Syst, 2017, 61: 172-186
[74] Ju Y,Adams B,Janowicz K,et al. Things and Strings: Improving Place Name Disambiguation from Short Texts by Combining Entity Co-occurrence with Topic Modeling[C]. European Knowledge Acquisition Workshop,Bologna,Italy,2016
[75] Acheson E,Volpi M,Purves R S. Machine Learning for Cross-Gazetteer Matching of Natural Features [J]. Int J Geogr InfSci,2020,34(4):708-734
[76] Santos R,Murrieta-Flores P,Calado P,et al. Toponym Matching Through Deep Neural Networks[J]. Int J Geogr InfSci,2018,32(2):324-348
[77]Hu Y,Deng C,Zhou Z. A Semantic and Sentiment Analysis on Online Neighborhood Reviews for Understanding the Perceptions of People Toward Their Living Environments[J]. Ann Am Assoc Geogr, 2019,109(4):1 052-1 073
[78]Huang Y,Li J,Wu G,et al. Quantifying the Bias in Place Emotion Extracted from Photos on Social Networking Sites:A Case Study on a University Campus[J]. Cities,2020,102:102 719
[79] Gao S,Goodchild M F. Asking Spatial Questions to Identify GIS Functionality[C]. 4th International Conference on Computing for Geospatial Research and Application,San Jose,CA,USA,2013
[80]Mai G,Janowicz K,Cai L,et al. SE‐KGE:A Location ‐ Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting[J]. Trans GIS,2020,doi:abs/10. 1111/tgis. 12629
[81] Scheider S,Ballatore A,Lemmens R. Finding and Sharing GIS Methods Based on the Questions They Answer[J]. Int J Digit Earth,2019,12(5): 594-613
[82]Mai G,Yan B,Janowicz K,et al. Relaxing Unanswerable Geographic Questions Using a Spatially Explicit Knowledge Graph Embedding Model[C]. The Annual International Conference on Geographic Information Science,Limassol,Cyprus,2019
[83] Vahedi B,Kuhn W,Ballatore A. Question-Based Spatial Computing—A Case Study[M]//Tapani S, Maribel Y,Santos L,et al. Geospatial Data in a Changing World. Helsinki, Finland: Springer, 2016:37–50
[84]Wang J,Hu Y,Joseph K. NeuroTPR:A Neuro net Toponym Recognition Model for Extracting Locations from Social Media Messages[J]. Trans GIS, 2020,24(3):719-735
[85]Hu Y,Wang J. How Do People Describe Locations During a Natural Disaster:An Analysis of Tweets from Hurricane Harvey[C]. 11th International Conference on Geographic Information Science (GIScience 2021)-Part I,Poznań,Poland,2020
[86] Zheng Y,Xie X,Ma W Y. GeoLife:A Collaborative Social Networking Service Among User,Location and Trajectory[J]. IEEE Data Eng Bull, 2010,33(2):32-39
[87] Gong P,Liu H,Zhang M L,et al. Stable Classification with Limited Sample:Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017[J]. Sci Bull,2019,64:370-373
[88] Yu L,Wang J,Gong P. Improving 30 m Global Land-Cover Map FROM-GLC with Time Series MODIS and Auxiliary Data Sets:A SegmentationBased Approach[J]. Int J Remote Sens,2013,34 (16):5 851-5 867
[89] Arundel S T,Li W,Wang S. GeoNat v1. 0:A Dataset for Natural Feature Mapping with Artificial Intelligence and Supervised Learning[J]. Trans GIS, 2020,24(3):556-572
[90]Wang J,Hu Y. Enhancing Spatial and Textual Analysis with EUPEG:An Extensible and Unified Platform for Evaluating Geoparsers[J]. Trans GIS, 2019,23(6):1 393-1 419
[91]Wilson J P,Butler K,Gao S,et al. A Five-Star Guide for Achieving Replicability and Reproducibility when Working with GIS Software and Algorithms[J]. Ann Am Assoc Geogr,2020,DOI:10. 1080/ 24694452. 2020. 1806026
[92]Yang Q,Liu Y,Chen T,et al. Federated Machine Learning: Concept and Applications [J]. ACM Trans Intell Syst Technol,2019,10(2):1-19
[93] Cheng X,Wang J,Li H,et al. A Method to Evaluate Task-Specific Importance of Spatio-Temporal Units Based on Explainable Artificial Intelligence[J]. Int J Geogr Inf Sci, 2020,DOI:10. 1080/13658816.
[94] Xu Zenglin,Sheng Yongpan,He Lirong,et al. Review on Knowledge Graph Techniques[J]. Journal of University of Electronic Science and Technology ofChina,2016,45(4):589-606(徐增林,盛泳潘, 贺丽荣,等 . 知识图谱技术综述[J]. 电子科技大学 学报,2016,45(4):589-606)
[95]Hu Y,Janowicz K,Prasad S,et al. Metadata Topic Harmonization and Semantic Search for Linked‐Data Driven Geoportals:A Case Study Using ArcGIS Online[J]. Trans GIS,2015,19(3):398-416