数值优化算法【3】-- 动量法及其变种
数值优化算法【3】– 动量法及其变种一、问题的提出上节提到的批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降法(MBGD),基础完全一致,区别仅在于批大小(batch size)的不同。虽然由于批大小不同带来了很多不同的特性,但它们均避免不了一个问题,即模型参数的更新方向依赖于当前batch计算出的梯度,这可能会带来一些问题。 让我们考虑一个输入为二维向量 $\boldsymbol{x} = [x_1, x_2]^\top$ 、输出为标量的目标函数$f(\boldsymbol{x})=0.1x_1^2+2x_2^2$。 下图为基于该目标函数的梯度下降,学习率为 $0.4$...