数据驱动地球系统科学的深度学习和过程理解
【摘 要】机器学习方法越来越多地用于从不断增长的地理空间数据流中提取模式和见解,但是当系统行为受空间或时间上下文支配时,当前的方法可能不是最优的。在这里,我们认为应该将这些上下文线索用作深度学习( 一种能够自动提取时空特征的方法 )的一部分,而不是仅仅对经典机器学习方法做修补,以获得对地球系统科学问题更进一步的过程理解。例如,改善季节性预报的预测能力、跨多个时间尺度的远距离空间连接性建模。下一个阶段将会是将 物理过程模型 与 数据驱动的机器学习多功能性 相结合的混合建模方法时代。 【原 文】 M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, and N. Carvalhais, “Deep learning and process understanding for data-driven earth system science,” Nature, vol. 566, no. 7743, pp. 195–204,...