🔥 主要的贝叶斯推断方法
【摘 要】 统计推断是贝叶斯概率框架中最为重要的部分,也是概率机器学习的核心部分。几乎所有的概率机器学习模型,都会涉及根据观测量来获取隐变量或模型参数相关知识的问题,这就是统计推断。与频率主义不同,贝叶斯推断方法并不给出隐变量的确切值,而是保留了模型的不确定性,给出隐变量的概率分布。由于输出的不再是点,而是一个分布,导致贝叶斯统计推断的难度大大增加了。尤其是在复杂模型和大数据集中,问题更明显。本文对贝叶斯统计推断技术进行了综述,以便快速对相关领域知识有一个理解。 【原 文】 参考 Blei 的讲座自行整理。 1...
随机变量的变换
【摘 要】概率论的主要研究对象是随机变量及其分布,当随机变量经过某些变换或若干随机变量进行某种组合后,产生的新随机变量会具有什么性质是一个迷人的话题,本文介绍了变量变化法、累积分布函数法、矩生成函数法三种基础推导方法,其中变量变化法(也称变量变换法)是归一化流方法的支撑理论,累积分布函数法根据其名称显然只适用于连续型随机变量,矩生成法适用于多个独立随机变量的线性组合。 【原 文】https://bookdown.org/pkaldunn/DistTheory/Transformations.html 完成本模块后,您应该能够: 在给定原始变量分布的情况下,使用分布函数法、变量变换法和矩生成函数法推导目标变量的分布。 找到双变量情况下两个目标变量的联合分布。 1 引言在本章中,我们考虑在给定一个分布已知的随机变量 $X$ 和一个函数 $u(\cdot)$ 的情况下,某个随机变量 $Y = u(X)$...
最大似然、最大后验与贝叶斯推断
【摘 要】在机器学习和统计学习领域,最大似然、最大后验和贝叶斯推断是参数估计和预测最为常见的三种方法,堪称三座圣杯。本文从掌握证据(观测数据)出发,分别讨论了三种方法的原理、特点以及区别,而且内容极为简明易懂,是了解上述三个概念不可多得的好教材。该文是普渡大学机器人视觉实验室的自编教程,值得收藏。 【原 文】 (1)Kak, A. (2014) ‘ML, MAP, and Bayesian—the holy trinity of parameter estimation and data prediction’, An RVL Tutorial Presentation at Purdue University. (2)Kak, A. (2014) ‘Monte Carlo integration in bayesian estimation’.