贝叶斯分层模型
【摘 要】 本文简要介绍了贝叶斯分层建模方法的概念、优势和局限性。
【原 文】 N. Cressie, chapter 2, Statistics for spatio-temporal data. 2011.
核心内容快速浏览(1)贝叶斯全概率公式
贝叶斯全概率公式允许将随机变量的联合分布分解为一系列条件分布:
[A,B,C]=[A∣B,C][B∣C][C][A, B, C] = [A | B, C][B | C][C]
[A,B,C]=[A∣B,C][B∣C][C]
其中 “[⋅][ \cdot ][⋅]” 用于表示概率分布;例如,[A,B,C][A, B, C][A,B,C] 是随机变量 AAA、BBB 和 CCC 的联合分布,而 [A∣B,C][A | B, C][A∣B,C] 是给定 BBB 和 CCC 时 AAA 的条件分布。
(2)Berlinear 的贝叶斯分层模型 (BHM) 范式
Mark Berliner (Berliner,1996)是最早使用贝叶斯全概率公式分解来为复杂过程建模的人。也就是说,联合分布 [data,process,parameter ...