pyton、node.js、hexo配置指南
1 python 环境配置注意事项
1.1 安装 conda 环境
方法1: 看帮助安装和配置 https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
方法2: sudo pacman -S miniconda 或 sudo pacman -S anaconda
注意: miniconda 小一些,按需自行安装软件包,因为用的少,所以我通常使用 miniconda
1.2 conda 常用命令
显示 conda 的配置信息: conda info
新建环境 conda create -n ENV_NAME python=版本号
激活环境 conda activate ENV_NAME
安装包 conda install PACKAGE_NAME
卸载包 conda remove PACKAGE_NAME
显示所有已安装的包 conda list
退出环境 conda deactivate
删除环境 conda env remove -n ENV_NAME
显示所有已安装的环境 conda env list
注 ...
克里金和高斯过程的关系
克里金法 源于地统计学,在统计学中也称为 高斯过程回归,是一种基于高斯过程的空间插值方法。在适当的先验假设下,克里金法在未采样位置提供最佳线性无偏预测 (BLUP)。该方法广泛应用于空间分析和计算机实验领域。该方法的理论基础由法国数学家 Georges Matheron 于 1960 年根据 Danie G. Krige 的硕士论文开发。 Krige 试图根据几个钻孔的样本来估计黄金最有可能的分布。
在面向二三维空间时,从数学上两者本质上是相同的。
两者之间的主要区别特征见下表:
Table 1. 区分克里金和现代高斯过程的主要特征
特征
高斯过程
克里金
Bayesian vs Frequentist
衍生自贝叶斯观点
衍生自频率派观点
目标
给定可用训练数据后,从后验高斯过程中进行采样。
给定有效测量后,获得目标变量的最佳线性无偏估计。
维度
没有维度限制,所有特征都可以作为预测变量,并天然形成一个高维空间。目标变量被认为是此高维空间中的一个函数。
为二维/三维空间分析而设计。虽然协同克里金法中会引入辅助变量,但同时增加了克里金方程的复杂性。
...
空间思维及贝叶斯方法
【摘 要】本文首先从时空数据分析面临的空间依赖性、空间异质性、数据稀疏性和不确定性四个挑战谈起,阐述了空间统计思维的重要性。在简单描述了频率派思想和贝叶斯派思想的区别后,重点阐述了贝叶斯方法的优点和可行性,尤其是其中贝叶斯分层模型和贝叶斯空间计量学模型。本文节选自 Haining 的空间和时空数据建模一书,
【原 文】 R. P. Haining and G. Li, Chapter 1 ,Modelling spatial and spatial-temporal data: a Bayesian approach. Boca Raton: CRC Press, Taylor & Francis, 2020.
1 时空数据分析面临的挑战
1.1 空间依赖性
对于空间和时空数据,在空间和/或时间上靠得很近的值不太可能是独立的。依赖性(或缺乏独立性)是空间和时空数据的基本属性。在某个时间间隔内对某个区域观察到的数据值通常包含有关同一变量在同一(或附近)时间窗口内其他(附近)区域的数据值的一些信息。例如,仔细检查图 1.1 会发现,尽管存在例外情况(例如,参见标记为 x ...
点参考数据的贝叶斯建模软件spBayes
原文: Finley, A. O., Banerjee, S., & E.Gelfand, A. (2015). SpBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models. Journal of Statistical Software, 63(13). https://doi.org/10.18637/jss.v063.i13
Andrew O. Finley,密歇根州立大学
Sudipto Banerjee,加州大学洛杉矶分校
Alan E. Gelfand, 杜克大学
1 模型框架的定义
贝叶斯高斯空间回归模型是一个分层建模框架:
p(θ)×N(β∣μβ,Σβ)×N(α∣0,K(θ))×N(y∣Xβ+Z(θ)α,D(θ))(1)p(\boldsymbol{\theta}) \times \mathcal{N}(\boldsymbol{\beta} | \boldsymbol{\mu}_{\beta},\Sigma_{\beta}) \ti ...
Cressie 的最新空间统计论述
【阅读建议】 本文是 Cressie 在 2021 年新撰写的一篇综述类文章,其主要看点包括:(1)用统一的形式化框架实现了点参考数据、面元数据、点模式数据的建模;(2)对多变量空间统计建模的统一形式化;(3)大数据的空间离散化处理方法(此处尚未理解其优势所在,需要进一步阅读引用的论文);
【摘 要】 空间统计是一个致力于与空间标签相关数据统计分析的研究领域。地理学家通常将 “位置信息” 与 “属性信息” 联系起来,并且定义了一个被称为 “空间分析” 的研究领域。许多操作空间数据的方法都是由算法驱动的,缺少与之相关的不确定性量化。如果空间分析是统计的(即结合了不确定性量化),则它属于空间统计的研究范畴。空间统计模型的主要特征是邻近的属性值比远处的属性值在统计上更相关,这也被称为地理学第一定律。
【原 文】 N. Cressie and M. T. Moores, “Spatial Statistics,” 2021, doi: 10.48550/ARXIV.2105.07216.
【参 考】
1 导言
空间统计提供了一个概率框架,用于回答数据中包含空间位置信息、且所提问题与 ...
空间随机场及其建模方法
【摘 要】 空间数据集通常被分为三种类型:点参考数据、面元数据和点模式数据,本文重点介绍点参考数据的建模基础–空间随机场,讨论了空间随机场的一些基本假设和性质,及其形式化定义。
【原 文】 O. Schabenberger and C. A. Gotway, Chapter 2,Statistical methods for spatial data analysis. Boca Raton: Chapman & Hall/CRC, 2005.
1 随机过程与随机场
(1)随机过程与随机场
随机过程是随机变量族或集合,其成员可以根据某种度量来识别或索引。例如:
时间序列 Y(t),t=t1,…,tnY (t),t = t_1,\ldots,t_nY(t),t=t1,…,tn 由观测该序列的时间点 t1,…,tnt_1,\ldots,t_nt1,…,tn 索引。
空间过程也是随机变量的集合,只是其中的随机变量由包含空间坐标 s=[s1,s2,⋅⋅⋅,sd]′\mathbf{s} =[s_1,s_2, ···,s_d]^\primes=[s1,s2,⋅⋅⋅ ...
贝叶斯分层模型
【摘 要】 本文简要介绍了贝叶斯分层建模方法的概念、优势和局限性。
【原 文】 N. Cressie, chapter 2, Statistics for spatio-temporal data. 2011.
核心内容快速浏览(1)贝叶斯全概率公式
贝叶斯全概率公式允许将随机变量的联合分布分解为一系列条件分布:
[A,B,C]=[A∣B,C][B∣C][C][A, B, C] = [A | B, C][B | C][C]
[A,B,C]=[A∣B,C][B∣C][C]
其中 “[⋅][ \cdot ][⋅]” 用于表示概率分布;例如,[A,B,C][A, B, C][A,B,C] 是随机变量 AAA、BBB 和 CCC 的联合分布,而 [A∣B,C][A | B, C][A∣B,C] 是给定 BBB 和 CCC 时 AAA 的条件分布。
(2)Berlinear 的贝叶斯分层模型 (BHM) 范式
Mark Berliner (Berliner,1996)是最早使用贝叶斯全概率公式分解来为复杂过程建模的人。也就是说,联合分布 [data,process,parameter ...
空间数据贝叶斯建模方法索引帖
基础
点参考数据
面元数据
点模式数据
多视图表示学习概览
【摘 要】 表示学习是一种训练机器学习模型的特殊类型,它学着将原始的输入数据变换为对实现未来任务更有用的新形式。近年关于表示学习的研风头日胜,因为在很多实际工作中,增加预训练以学习有用的表示,确实提升了很多下游任务的性能。本文主要对表示学习的门类和方法做一概述,文章内容主要来自 Murphy 的《Machine Learning: Advanced Topics》第 32 章。
【参 考】 李沐老师讲论文系列
自监督学习有生成式学习和对比学习,对比学习需要从无标注的数据中学习特征表示,并用于下游任务中。指导原则是: 通过构造相似实例和不相似实例,学习一个表示学习模型,使得相似的实例在投影空间中较接近,不相似的实例在投影空间中距离较远。
对比学习有三个关键问题:
正负样本的构造
编码器的设计
Loss函数的选取。
过去几年,尤其是2018年开始到现在,对比学习在计算机视觉领域的发展可以划成四个阶段:
2018~2019年中,Inst Disc、CPC、CMC等方法和模型都还没有统一,目标函数和代理任务也还没有统一;
2019~2020年中,SimCLR、Moco、CP ...
表示学习概览
【摘 要】 表示学习是一种训练机器学习模型的特殊类型,它学着将原始的输入数据变换为对实现未来任务更有用的新形式。近年关于表示学习的研风头日胜,因为在很多实际工作中,增加预训练以学习有用的表示,确实提升了很多下游任务的性能。本文主要对表示学习的门类和方法做一概述,文章内容主要来自 Murphy 的《Machine Learning: Advanced Topics》第 32 章。
【参 考】 Murphy, 《Machine Learning: Advanced Topics》ch. 20
【思维导图】
1 概述
表示学习是一种训练机器学习模型以将原始输入变换为更容易解决新任务的形式的范式。与在训练时就已经知道了任务的监督学习不同,表示学习通常假设我们并不知道希望解决的任务是什么。但如果没有这些知识,是否真的可以学习到对后续任务有用的输入呢?
表示学习存在可能性的证据之一来自我们自身。人类可以快速形成对新类的丰富表示,并且支持多种行为:找到该类的更多实例,将该实例分解为多个部分,从该类生成新实例等。但是,很难直接指定我们希望机器学习系统学习哪些表示。我们可能希 ...