GeoAI 的近期研究总结与思考
【摘 要】本文摘自武汉大学学报,作者在文章中列举了大量GeoAI领域的文献参考,值得收藏。尤其是梳理和总结了当前5个主要研究热点方向,并列出了最近急迫需要解决的3个方面挑战。
【原 文】高松,地理空间人工智能的近期研究总结与思考,武汉大学学报,DOI:10.13203/j.whugis20200597
1 GeoAI 的发展历史简介
(1)GeoAI背景
人工智能(AI)领域的技术进步给地理空间相关领域研究的智能化发展和融合创新带来了新机遇和新挑战。
近期快速发展的主要动力来自于深度学习模型和开发框架的快速发展、产业化的日趋成熟、各行业领域大数据的爆发、计算机硬件计算性能不断升级,进而可以支持在很短的时间内训练和部署人工智能模型、支持数据驱动的智能化决策和产业变革
(2)什么是GeoAI?
地理空间人工智能(GeoAI)是地理空间科学与人工智能相结合的交叉学科研究方向
GeoAI通过研究与开发机器的空间智能,提升对于地理现象和地球科学过程的动态感知、智能推理和知识发现能力
GeoAI寻求解决人类和地球环境系统相互作用中的重大科学和工程问题
比如:人口迁移预测、复杂条 ...
Git简明教程
Git简明教程
1. 个人基本故事线
下图是从个人开发者角度所能观察到的场景:
1.1 如何从远程仓库获取代码
git clone
第一次时用克隆
git fetch
第二次开始
将远程仓库代码拉取到本地仓库
无冲突时checkout到工作区
有冲突时merge到工作区
git pull
第二次开始
掌握pull和fetch的区别
pull = fetch+merge
1.2 提交代码到远程仓库
git add .
从工作区添加到暂存区
git commit
从暂存区更新到本地仓库
git commit -a = git add . + git commit
git push
从本地仓库更新到远程仓库
1.3 手工创建本地仓库并与远程仓库同步
git init
初始化一个本地仓库
git remote add origin <远程仓库地址>
将本地仓库关联到远程仓库
若有已经关联的远程仓库,使用git remote rm origin删除老的远程仓库
拉取远程仓库,与 ...
黑盒变分推断
【摘要】 变分推断已经成为一种广泛使用的方法,用于近似隐变量的复杂后验分布。 然而,传统方法推导出一个变分推断算法需要进行大量的特定模型分析。 这可能会阻碍我们快速开发和探索解决问题的模型。 本文中提出了一种黑盒变分推断算法,该算法可以快速应用于许多模型,几乎不需要额外的推导。我们采用的方法是基于变分目标做随机优化,其中噪声梯度由变分分布的蒙特卡洛样本计算得出,进而避免了对梯度解析形式的推导。考虑到随机优化存在方差变大的问题, 我们同时开发了一些减少梯度方差的方法,并始终保持了避免推导的简易性。 我们将本方法与相应的黑盒采样方法进行对比评估,发现本方法相比于采样方法,能更快达到较好的预测似然。 最后,通过快速构建和评估医疗数据中的几个模型,我们证明了黑盒变分推断法可以轻松探索更为广阔的模型空间。
【原文】Ranganath, R., Gerrish, S., and Blei, D. M. (2014). Black box variational inference. In Artificial Intelligence and Statistics, Vol 37 ...
使用预测方差削减加速随机梯度下降
【摘要】
【原文】R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In NIPS, 2013
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
...
随机变分推断
【摘 要】 随机变分推断是一种用于近似后验分布的可扩展算法。我们为一般性的概率模型开发了该技术,并且用两个概率主题模型(潜狄利克雷分配和分层狄利克雷过程主题模型)来证明了它的可用性。我们使用随机变分推断分析了几个大型文档集合:来自 Nature 的 30 万篇文章、来自《纽约时报》的 180 万篇文章和来自维基百科的 380 万篇文章。结果表明:随机变分推断可以轻松处理如此大规模的数据集,并且优于只能处理较小数据集的传统变分推断。我们还表明贝叶斯非参数主题模型的表现要优于参数模型。
【原 文】 Hoffman, M., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic Variational Inference. arXiv: http://arxiv.org/abs/1206.7051
1 问题提出
现代数据分析需要使用海量数据进行计算。想象下如下案例:
(1) 我们拥有 200 万本书的原始文本档案,经过扫描并在线存储。我们想发现文本中的主题,并按主题来组织书籍,最终为用户提供一个可以来探索收藏的浏览 ...
平均场(MeanField )变分推断
暂空缺。
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content, ...
MCMC 采样编程实战
MCMC 采样方法编程应用实战
【摘要】贝叶斯统计需要在贝叶斯定理基础上,通过参数先验和数据似然对参数的后验概率分布作出推断。从推断精度上区分,贝叶斯推断方法大致包含精确推断和近似推断两大类,其中精确推断常见有变量消除法(Variable Elimination, VE)和信念传播法(Belief Propagation, BP);而近似推断方法主要是马尔科夫链蒙特卡洛法(Mente Carlo, MCMC)和变分近似推断法(Variational Inference,VI),从原理上来说,前者属于随机性近似推断,而后者属于确定性近似推断。本文从概率编程角度,引导读者了解 MCMC 方法的使用过程,以便形成整体印象。
【原文】 MCMC sampling for dummies — While My MCMC Gently Samples (twiecki.io)
p{text-indent:2em;2}
引子
当谈论贝叶斯统计和概率编程时,通常会掩藏统计推断实际执行的细节,将其视为黑匣子。概率编程好处在于 “不必为构建模型而理解推断的工作原理”,但让使用者理解其原理肯定会 ...
一篇文章读懂 MCMC 方法
马尔可夫链蒙特卡洛( MCMC )采样
【摘要】传统的蒙特卡洛方法采用随机抽样的方式获得样本,其中大量随机抽取的样本要么被拒绝(拒绝采样)、要么被加权(重要性采样),样本效率不高。因此科学家在思考是否存在一种接受率为 100%100\%100% 的采样方法。马尔可夫链蒙特卡洛方法真是满足此要求的一种高效采样方法,它充分利用马尔可夫链的可逆性和平稳分布收敛特性,通过一段时间的老化后,所得到的样本能够实现 100%100\%100% 的接受率。
【原文】 MCMC and Gibbs Sampling
1 问题的提出
随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗模拟(Monte Carlo Simulation)。这个方法始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时乌拉姆、冯.诺依曼、费米、费曼、Nicholas Metropolis 等, 在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反应的时候,开始使用统计模拟的方法,并在最早的计算机上进行编程实现。
图 1: 随机模拟与计算机
现代的统计模拟方法最早由数学家乌拉姆提出,被 M ...
直接采样、拒绝采样与重要性采样
直接采样、拒绝采样与重要性采样
【摘要】蒙特卡洛(Monte Carlo method)是一种以概率统计理论为指导的重要数值计算方法。它使用随机数来解决随机变量(或随机函数)的期望值积分求解、仿真模拟等非常棘手的计算问题,特别适用于无解析形式的复杂概率分布。根据对蒙特卡洛方法的理解,会发现其中最为核心的部分是如何在给定一个复杂分布时,按照概率随机、高效地获得样本,即采样方法问题。本文将介绍其中最为基础和直觉的几种早期方法,分别是基于 CDF 的直接采样、拒绝采样和重要性采样。
1 直接采样
直接采样的思想是:计算机适合于随机的均匀采样,如果能够把任意概率分布的采样转化成对均匀分布的采样,就可以解决采样问题。
假设 yyy 服从某项分布 p(y)p(y)p(y),其累积分布函数( CDF )为 h(y)h(y)h(y),现有均匀分布的样本 z∼Uniform(0,1)z \sim \operatorname{Uniform}(0,1)z∼Uniform(0,1),令 z=h(y)z = h(y)z=h(y),即 y=h−1(z)y = h^{-1}(z)y=h−1(z),结 ...