多尺度地理加权回归
其中 表示样本大小, 定义为误差项的标准差, 是帽子矩阵的迹。选定带宽后,可以进一步计算权重,并在每个校准位置拟合 GWR 模型,以获得一组局部系数。通过取每个校准位置的局部 的平均值,可以获得 GWR 模型的总体 值。
【原 文】 Fotheringham, A. Stewart and Yang, Wenbai and Kang, Wei. Multiscale Geographically Weighted Regression (MGWR) 2017. Annals of the American Association of Geographers , Vol. 107, No. 6 p. 1247-1265.
【阅后感】
本文作者是地理加权回归方法的提出者之一,也是《地理加权回归:空间可变关系的分析》一书的作者。在提出地理加权回归十余年后,作者发现原来的方法对于尺度缺乏建模能力(即解释变量可能来自于不同尺度的空间数据),进而深入研究了与尺度结合的地理加权回归,提出了自己的一套新方法。
参考文献
- [1] Anselin, L., and S. Rey. 1991. Properties of tests for spatial dependence in linear regression models. Geographical Analysis 23 (2): 112—31.
- [2] Atkinson, P. M., S. E. German, D. A. Sear, and M. J. Clark. 2003. Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis 35 (1): 58—82.
- [3] Brenner, N. 2001. The limits to scale? Methodological reflections on scalar structuration. Progress in Human Geography 25 (4): 591—614.
- [4] Brunsdon, C., A. S. Fotheringham, and M. Charlton. 1999. Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science 39 (3): 497—524.
- [5] Buja, A., T. Hastie, and R. Tibshirani. 1989. Linear smoothers and additive models. The Annals of Statistics 17 (2): 453—510.
- [6] Everitt, B. S. 2005. Generalized additive model. In Encyclopedia of statistics in behavioral science, ed. B. S. Everitt and D. C. Howell, 719—21. Chichester, UK: Wiley.
- [7] Finley, A. O. 2011. Comparing spatially-varying coefficients: Models for analysis of ecological data with nonstationarity and anisotropic residual dependence. Methods in Ecology and Evolution 2:143—54.
- [8] Foody, G. 2003. Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI—rainfall relationship. Remote Sensing of Environment 88 (3): 283—93.
- [9] Fotheringham, A. S., C. Brundson, and M. Charlton. 2002. Geographically weighted regression: The analysis of spatially varying relationships. Chichester, UK: Wiley.
- [10] Fotheringham, A. S., M. Charlton, and C. Brunsdon. 1996.The geography of parameter space: An investigation of spatial non-stationarity. International Journal of Geographic Information Systems 10 (5): 605—27.
- [11] Fotheringham, A. S., M. Kelly, and M. Charlton. 2013. The demographic impacts of the Irish famine: Towards a greater geographical understanding. Transactions of the Institute of British Geographers 38 (2): 221—37.
- [12] Fotheringham, A. S., and T. Oshan. 2016. GWR and Multicollinearity: Dispelling the myth. Journal of Geographical Systems 18 (4): 303—29.
- [13] Gelfand, A. E., H. Kim, C. F. Sirmans, and S. Banerjee. 2003. Spatial modelling with spatially varying coefficient processes. Journal of the American Statistical Association 98:387—96.
- [14] Gelfand, A. E., A. M. Schmidt, and C. F. Sirmans. 2003. Multivariate spatial process models: Conditional and unconditional Bayesian approaches using coregionalization. Technical Report 20, Institute of Statistics and Decision Sciences, Duke University, Durham, NC.
- [15] Goodchild, M. 2001. Models of scale and scales of modelling, In Modelling scale in geographic information ccience, ed. N. Tate and P. M. Atkinson, 3—10. Chichester, UK: Wiley.
- [16] Haining, R. 1986. Spatial models and regional science: A comment on Anselin’s paper and research directions. Journal of Regional Science 26 (4): 793—98.
- [17] Harvey, D. W. 1968. Pattern, process and the scale problem in geographical research. Transactions of the Institute of British Geographers 45:71—78.
- [18] Hastie, T., and R. Tibshirani. 1986. Generalized additive models. Statistical Science 1 (3): 297—310.
- [19] ———. 1990. Generalized additive models. London: Chapman and Hall/CRC.
- [20] Liverman, D. 2004. Who governs, at what scale and at what price? Geography, environmental governance and the commodification of mature. Annals of the Association of American Geographers 94:734—38.
- [21] Lloyd, C. D. 2010. Exploring population spatial concentrations in Northern Ireland by community background and other characteristics: An application of geographically weighted spatial statistics. International Journal of Geographical Information Science 24 (8): 1193—1221.
- [22] ———. 2011. Local models for spatial analysis. Boca Raton, FL: CRC.
- [23] McMaster, R. B., and E. Sheppard. 2004. Introduction: Scale and geographic inquiry. In Scale and geographic inquiry: Nature, society and method, ed. E. Sheppard and R. B. McMaster, 1—22. Oxford, UK: Blackwell.
- [24] Moellering, H., and W. Tobler. 1972. Geographical variances. Geographical Analysis 4:34—50.
- [25] Paasi, A. 2004. Place and region: Looking through the prism of scale. Progress in Human Geography 28:536—46.
- [26] Sheppard, E., and R. B. McMaster, eds. 2004. Scale and geographic inquiry: Nature, society and method. Oxford, UK: Blackwell.
- [27] Tate, N., and P. M. Atkinson, eds. 2001. Modelling scale in geographic information science. Chichester, UK: Wiley.
- [28] Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography 46: 234—40.
- [29] Wheeler, D. C., and A. Paez. 2010. Geographically weighted regression. In Handbook of applied spatial analysis: Software tools, methods and applications, ed. M. M. Fischer and A. Getis, 461—68. Berlin: Springer-Verlag.
- [30] Wheeler, D. C., and L. A Waller. 2009. Comparing spatially varying coefficient models: A case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests. Journal of GeoSystems 11:1—22.
- [31] Whelan, K. 1997. The atlas of the Irish rural landscape. Cork, Ireland: Cork University Press.
- [32] Yang, W. 2014. An extension of geographically weighted regression with flexible bandwidths. PhD thesis, School of Geography and Geosciences, University of St. Andrews, Fife, Scotland, UK. http://hdl.handle.net/10023/7052 (last accessed 1 August 2017).
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 西山晴雪的知识笔记!