其中 $n$ 表示样本大小,$\hat{\sigma}$ 定义为误差项的标准差,$\operatorname{tr}(\boldsymbol{S})$ 是帽子矩阵的迹。选定带宽后,可以进一步计算权重,并在每个校准位置拟合 GWR 模型,以获得一组局部系数。通过取每个校准位置的局部 $R^{2}$ 的平均值,可以获得 GWR 模型的总体 $R^{2}$ 值。

【原 文】 Fotheringham, A. Stewart and Yang, Wenbai and Kang, Wei. Multiscale Geographically Weighted Regression (MGWR) 2017. Annals of the American Association of Geographers , Vol. 107, No. 6 p. 1247-1265.

【阅后感】 本文作者是地理加权回归方法的提出者之一,也是《地理加权回归:空间可变关系的分析》一书的作者。在提出地理加权回归十余年后,作者发现原来的方法对于尺度缺乏建模能力(即解释变量可能来自于不同尺度的空间数据),进而深入研究了与尺度结合的地理加权回归,提出了自己的一套新方法。

参考文献

  • [1] Anselin, L., and S. Rey. 1991. Properties of tests for spatial dependence in linear regression models. Geographical Analysis 23 (2): 112—31.
  • [2] Atkinson, P. M., S. E. German, D. A. Sear, and M. J. Clark. 2003. Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis 35 (1): 58—82.
  • [3] Brenner, N. 2001. The limits to scale? Methodological reflections on scalar structuration. Progress in Human Geography 25 (4): 591—614.
  • [4] Brunsdon, C., A. S. Fotheringham, and M. Charlton. 1999. Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science 39 (3): 497—524.
  • [5] Buja, A., T. Hastie, and R. Tibshirani. 1989. Linear smoothers and additive models. The Annals of Statistics 17 (2): 453—510.
  • [6] Everitt, B. S. 2005. Generalized additive model. In Encyclopedia of statistics in behavioral science, ed. B. S. Everitt and D. C. Howell, 719—21. Chichester, UK: Wiley.
  • [7] Finley, A. O. 2011. Comparing spatially-varying coefficients: Models for analysis of ecological data with nonstationarity and anisotropic residual dependence. Methods in Ecology and Evolution 2:143—54.
  • [8] Foody, G. 2003. Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI—rainfall relationship. Remote Sensing of Environment 88 (3): 283—93.
  • [9] Fotheringham, A. S., C. Brundson, and M. Charlton. 2002. Geographically weighted regression: The analysis of spatially varying relationships. Chichester, UK: Wiley.
  • [10] Fotheringham, A. S., M. Charlton, and C. Brunsdon. 1996.The geography of parameter space: An investigation of spatial non-stationarity. International Journal of Geographic Information Systems 10 (5): 605—27.
  • [11] Fotheringham, A. S., M. Kelly, and M. Charlton. 2013. The demographic impacts of the Irish famine: Towards a greater geographical understanding. Transactions of the Institute of British Geographers 38 (2): 221—37.
  • [12] Fotheringham, A. S., and T. Oshan. 2016. GWR and Multicollinearity: Dispelling the myth. Journal of Geographical Systems 18 (4): 303—29.
  • [13] Gelfand, A. E., H. Kim, C. F. Sirmans, and S. Banerjee. 2003. Spatial modelling with spatially varying coefficient processes. Journal of the American Statistical Association 98:387—96.
  • [14] Gelfand, A. E., A. M. Schmidt, and C. F. Sirmans. 2003. Multivariate spatial process models: Conditional and unconditional Bayesian approaches using coregionalization. Technical Report 20, Institute of Statistics and Decision Sciences, Duke University, Durham, NC.
  • [15] Goodchild, M. 2001. Models of scale and scales of modelling, In Modelling scale in geographic information ccience, ed. N. Tate and P. M. Atkinson, 3—10. Chichester, UK: Wiley.
  • [16] Haining, R. 1986. Spatial models and regional science: A comment on Anselin’s paper and research directions. Journal of Regional Science 26 (4): 793—98.
  • [17] Harvey, D. W. 1968. Pattern, process and the scale problem in geographical research. Transactions of the Institute of British Geographers 45:71—78.
  • [18] Hastie, T., and R. Tibshirani. 1986. Generalized additive models. Statistical Science 1 (3): 297—310.
  • [19] ———. 1990. Generalized additive models. London: Chapman and Hall/CRC.
  • [20] Liverman, D. 2004. Who governs, at what scale and at what price? Geography, environmental governance and the commodification of mature. Annals of the Association of American Geographers 94:734—38.
  • [21] Lloyd, C. D. 2010. Exploring population spatial concentrations in Northern Ireland by community background and other characteristics: An application of geographically weighted spatial statistics. International Journal of Geographical Information Science 24 (8): 1193—1221.
  • [22] ———. 2011. Local models for spatial analysis. Boca Raton, FL: CRC.
  • [23] McMaster, R. B., and E. Sheppard. 2004. Introduction: Scale and geographic inquiry. In Scale and geographic inquiry: Nature, society and method, ed. E. Sheppard and R. B. McMaster, 1—22. Oxford, UK: Blackwell.
  • [24] Moellering, H., and W. Tobler. 1972. Geographical variances. Geographical Analysis 4:34—50.
  • [25] Paasi, A. 2004. Place and region: Looking through the prism of scale. Progress in Human Geography 28:536—46.
  • [26] Sheppard, E., and R. B. McMaster, eds. 2004. Scale and geographic inquiry: Nature, society and method. Oxford, UK: Blackwell.
  • [27] Tate, N., and P. M. Atkinson, eds. 2001. Modelling scale in geographic information science. Chichester, UK: Wiley.
  • [28] Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography 46: 234—40.
  • [29] Wheeler, D. C., and A. Paez. 2010. Geographically weighted regression. In Handbook of applied spatial analysis: Software tools, methods and applications, ed. M. M. Fischer and A. Getis, 461—68. Berlin: Springer-Verlag.
  • [30] Wheeler, D. C., and L. A Waller. 2009. Comparing spatially varying coefficient models: A case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests. Journal of GeoSystems 11:1—22.
  • [31] Whelan, K. 1997. The atlas of the Irish rural landscape. Cork, Ireland: Cork University Press.
  • [32] Yang, W. 2014. An extension of geographically weighted regression with flexible bandwidths. PhD thesis, School of Geography and Geosciences, University of St. Andrews, Fife, Scotland, UK. http://hdl.handle.net/10023/7052 (last accessed 1 August 2017).