将所要预测实体类型的描述信息作为先验知识输入到模型中,并且将NER问题建模为阅读理解问题(MRC),最终通过BERT来进行建模。具体的,给定句子S和所要抽取的实体类型如”organization”,其通过问句生成模块将”organization”转换为问句Q”find organizations including companies, agencies and institutions”,将此Q和S作为两个句子输入到BERT中进行训练。由于实体类型先验知识的加入,在中文数据集OntoNotes4.0一半训练数据的基础上,BERT-MRC的模型效果就能达到单纯将句子S输入到BERT进行序列标注的模型在全量数据上训练的效果。此外,由于把每类数据的识别进行了区分,因此,此类模型能有效的解决复杂实体识别中的实体交叉和嵌套问题(见2.4.4)。
为解决含有不连续实体的overlapping实体识别问题,引入了BIO标注体系的变体,即在BIO的基础上,增加了BD,BI,BH,IH四个指标,分别代表Beginning of Discontinuous body, Inside of Discontinuous body, Beginning of Head和Inside of Head。以上面图c为例,在新的标注体系下,标注结果为:肌(BH)肉(IH)疼(B)痛(I)和(O)疲(BD)劳(ID)。此类方法的缺陷在于,如果同一句子中出现多个不连续的实体,则会出现实体混淆问题。
5. Yates, A.; Banko, M.; Broadhead, M.; Cafarella, M.; Etzioni,O.; and Soderland, S. 2007. Textrunner: Open information extraction on the web. In Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT), 25--26..
6. Diego Marcheggiani and Ivan Titov. 2016. Discretestate variational autoencoders for joint discovery and factorization of relations. Transactions of ACL..
7. Elsahar, H., Demidova, E., Gottschalk, S., Gravier, C., & Laforest, F. (2017, May). Unsupervised open relation extraction. In European Semantic Web Conference (pp. 12-16). Springer, Cham..
8. Wu, R., Yao, Y., Han, X., Xie, R., Liu, Z., Lin, F., \... & Sun, M. (2019, November). Open relation extraction: Relational knowledge transfer from supervised data to unsupervised data. In EMNLP-IJCNLP (pp.219-228)..
9. Stanovsky, G., Michael, J., Zettlemoyer, L., & Dagan, I. (2018, June). Supervised open information extraction. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (pp. 885-895)..
10. Zhan, J., & Zhao, H. (2020, April). Span model for open information extraction on accurate corpus. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 05, pp. 9523-9530).
[11. Cui, L., Wei, F., & Zhou, M. (2018). Neural open information extraction. arXiv preprint arXiv:1805.04270.
12. Sameer Pradhan, Mitchell P. Marcus, Martha Palmer, Lance A. Ramshaw, Ralph M. Weischedel, and Nianwen Xue, editors. 2011. Proceedings of the Fifteenth Conference on Computational Natural Language Learning:Shared Task, CoNLL 2011, Portland, Oregon, USA, June 23-24, 2011. ACL.
13. Gina-Anne Levow. 2006. The third international Chinese language processing bakeoff: Word segmentation and named entity recognition. In Proceedings of the Fifth SIGHANWorkshop on Chinese Language Processing, pages 108--117, Sydney, Australia. Association for Computational Linguistics.
14. Nanyun Peng and Mark Dredze. 2015. Named entity recognition for Chinese social media with jointly trained embeddings. In EMNLP. pages 548--554.
15. Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task: Languageindependent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooperation with HLT-NAACL 2003, Edmonton, Canada, May 31 - June 1, 2003, pages 142--147\.
16. George R Doddington, Alexis Mitchell, Mark A Przybocki, Stephanie M Strassel Lance A Ramshaw, and Ralph M Weischedel. 2005. The automatic content extraction (ace) program-tasks, data, and evaluation. In LREC, 2:1.
17. Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Bj¨orkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. 2013. Towards robust linguistic analysis using OntoNotes. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pages 143--152, Sofia, Bulgaria.Association for Computational Linguistics.
19. Wu, T.; Qi, G.; Li, C.; Wang, M. A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications. Sustainability 2018, 10, 3245.
20. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of machine learning research, 12(ARTICLE), 2493-2537.
21. Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.
22. Strubell, E., Verga, P., Belanger, D., & McCallum, A. (2017). Fast and accurate entity recognition with iterated dilated convolutions. arXiv preprint arXiv:1702.02098.
23. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
24. Zhang, Y., & Yang, J. (2018). Chinese ner using lattice lstm. arXiv preprint arXiv:1805.02023.
25. Gui, T., Ma, R., Zhang, Q., Zhao, L., Jiang, Y. G., & Huang, X. (2019, August). CNN-Based Chinese NER with Lexicon Rethinking. In IJCAI (pp. 4982-4988).
26. Li, X., Yan, H., Qiu, X., & Huang, X. (2020). FLAT: Chinese NER Using Flat-Lattice Transformer. arXiv preprint arXiv:2004.11795.
27. Li, X., Feng, J., Meng, Y., Han, Q., Wu, F., & Li, J. (2019). A unified mrc framework for named entity recognition. arXiv preprint arXiv:1910.11476.
28. Yuchen Lin, B., Lee, D. H., Shen, M., Moreno, R., Huang, X., Shiralkar, P., & Ren, X. (2020). TriggerNER: Learning with Entity Triggers as Explanations for Named Entity Recognition. arXiv, arXiv-2004.
29. Zhang, X., Jiang, Y., Peng, H., Tu, K., & Goldwasser, D. (2017). Semi-supervised structured prediction with neural crf autoencoder. Association for Computational Linguistics (ACL).
30. Chen, M., Tang, Q., Livescu, K., & Gimpel, K. (2019). Variational sequential labelers for semisupervised learning. arXiv preprint arXiv:1906.09535.
31. Chen, J., Wang, Z., Tian, R., Yang, Z., & Yang, D. (2020). Local Additivity Based Data Augmentation for Semi-supervised NER. arXiv preprint arXiv:2010.01677.
32. Lakshmi Narayan, P. (2019). Exploration of Noise Strategies in Semi-supervised Named Entity Classification.
33. Alejandro Metke-Jimenez and Sarvnaz Karimi. 2015. Concept extraction to identify adverse drug reactions in medical forums: A comparison of algorithms. CoRR abs/1504.06936.
34. Xiang Dai, Sarvnaz Karimi, Ben Hachey, Cécile Paris. An Effective Transition-based Model for Discontinuous NER. ACL 2020: 5860-5870
35. Wei Lu and Dan Roth. 2015. Joint mention extraction and classification with mention hypergraphs. In Conference on Empirical Methods in Natural Language Processing, pages 857--867, Lisbon, Portugal.
36. Walker, C., Strassel, S., Medero, J., and Maeda, K. 2005. ACE 2005 multilingual training corpuslinguistic data consortium.
37. Szpakowicz, S. 2009. Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions, pages 94--99. Association for Computational Linguistics.
38. Zhang, Yuhao and Zhong, Victor and Chen, Danqi and Angeli, Gabor and Manning, Christopher D. 2017. Position-aware Attention and Supervised Data Improve Slot Filling. In Proceedings of EMNLP. Pages 35-45.
39. Riedel, S., Yao, L., and McCallum, A. 2010. Modeling relations and their mentions without labeled text. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 148-163. Springer.
40. Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou, and Maosong Sun. 2019. DocRED: A large-scale document-level relation extraction dataset. In Proceedings of ACL, pages 764--777.
41. Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolutional deep neural network. In Proceedings of COLING, pages 2335--2344.
42. Linlin Wang, Zhu Cao, Gerard De Melo, and Zhiyuan Liu. 2016. Relation classification via multi-level attention cnns. In Proceedings of ACL, pages 1298--1307.
43. Dongxu Zhang and Dong Wang. 2015. Relation classification via recurrent neural network. arXiv preprint arXiv:1508.01006.
44. Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., and Jin, Z. 2015. Classifying relations via long short term memory networks along shortest dependency paths. In proceedings of EMNLP, pages 1785--1794.
45. Shanchan Wu and Yifan He. 2019. Enriching pre-trained language model with entity information for relation classification.
46. Zhao, Y., Wan, H., Gao, J., and Lin, Y. 2019. Improving relation classification by entity pair graph. In Asian Conference on Machine Learning, pages 1156--1171.
47. Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision for relation extraction without labeled data. In Proceedings of ACL-IJCNLP, pages 1003--1011.
48. Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D Manning. 2012. Multi-instance multi-label learning for relation extraction. In Proceedings of EMNLP, pages 455--465.
49. Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. 2015. Distant supervision for relation extraction via piecewise convolutional neural networks. In Proceedings of EMNLP, pages 1753--1762.
50. Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016. Neural relation extraction with selective attention over instances. In Proceedings of ACL, pages 2124--2133.
51. Yuhao Zhang, Peng Qi, and Christopher D. Manning. 2018. Graph convolution over pruned dependency trees improves relation extraction. In Proceedings of EMNLP, pages 2205--2215.
52. Guoliang Ji, Kang Liu, Shizhu He, Jun Zhao, et al. 2017. Distant supervision for relation extraction with sentence-level attention and entity descriptions. In AAAI, pages 3060--3066.
53. Bordes A, Usunier N, Garcia-Duran A, et al. 2013. Translating embeddings for modeling multi-relational data. Advances in neural information processing systems. pages 2787-2795.
54. Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and Peng Li. 2018. Hierarchical relation extraction with coarse-to-fine grained attention. In Proceedings of EMNLP, pages 2236--2245.
55. Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei Zhang, and Huajun Chen. 2019. Longtail relation extraction via knowledge graph embeddings and graph convolution networks. In Proceedings of NAACL-HLT, pages 3016--3025.
56. Qin, P., Xu, W., and Wang, W. Y. 2018b. Robust distant supervision relation extraction via deep reinforcement learning. arXiv preprint arXiv:1805.09927.
57. Xiangrong Zeng, Shizhu He, Kang Liu, and Jun Zhao. 2018. Large scaled relation extraction with reinforcement learning. In Proceedings of AAAI, pages 5658--5665.
58. Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and Xiaoyan Zhu. 2018. Reinforcement learning for relation classification from noisy data. In Proceedings of AAAI, pages 5779--5786.
59. Yi Wu, David Bamman, and Stuart Russell. 2017. Adversarial training for relation extraction. In Proceeding of EMNLP, pages 1778--1783.
60. Pengda Qin, Weiran Xu, William Yang Wang. 2018. DSGAN: Generative Adversarial Training for Distant Supervision Relation Extraction. In Proceeding of ACL, pages 496--505.
61. Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. 2019. Matching the blanks: Distributional similarity for relation learning. In Proceedings of ACL, pages 2895--2905.
62. Meng Qu, Tianyu Gao, Louis-Pascal Xhonneux, Jian Tang. 2020. Few-shot Relation Extraction via Bayesian Meta-learning on Task Graphs. In Proceedings of ICML.
63. Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao,Peng Zhou, Bo Xu. 2017. Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1227--1236.
64. Wei, Zhepei and Su, Jianlin and Wang, Yue and Tian, Yuan and Chang, Yi. 2020 A Novel Cascade Binary Tagging Framework for Relational Triple Extraction}. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, pages 1476---1488.
65. Luan, Y., Wadden, D., He, L., Shah, A., Ostendorf, M., & Hajishirzi, H. (2019). A general framework for information extraction using dynamic span graphs. arXiv preprint arXiv:1904.03296.
66. Wadden, D., Wennberg, U., Luan, Y., & Hajishirzi, H. (2019). Entity, relation, and event extraction with contextualized span representations. arXiv preprint arXiv:1909.03546.
67. Sahu, S. K., et al. 2019. Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics:4309--4316.
68. mLiu, B., Gao, H., Qi, G., Duan, S., Wu, T., & Wang, M. (2019, April). Adversarial Discriminative Denoising for Distant Supervision Relation Extraction. In International Conference on Database Systems for Advanced Applications (pp. 282-286). Springer, Cham.
69. Namboodiri, A. M., & Jain, A. K. (2007). Document structure and layout analysis. In Digital Document Processing (pp. 29-48). Springer, London.
70. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., & Zhou, M. (2020, August). Layoutlm: Pre-training of text and layout for document image understanding. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1192-1200).
71. Li, M., Xu, Y., Cui, L., Huang, S., Wei, F., Li, Z., & Zhou, M. (2020). DocBank: A Benchmark Dataset for Document Layout Analysis. arXiv preprint arXiv:2006.01038.
72. Ainslie, J., Ontanon, S., Alberti, C., Cvicek, V., Fisher, Z., Pham, P., \... & Yang, L. (2020, November). ETC: Encoding Long and Structured Inputs in Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 268-284).
73. Tang, J., Lu, Y., Lin, H., Han, X., Sun, L., Xiao, X., & Wu, H. (2020, November). Syntactic and Semantic-driven Learning for Open Information Extraction. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings (pp. 782-792).
74. L. Ratinov and D. Roth. 2019. Design challenges and misconceptions in named entity recognition. 147–155. Retrieved from http://dl.acm.org/citation.cfm?id=1596374.1596399.
75. N. Rizzolo and D. Roth. 2007. Modeling discriminative global inference. InProceedings of the International Conference on Semantic Computing (ICSC’07). 597–604.
76. D. Klein, J. Smarr, H. Nguyen, and C. D. Manning. 2003. Named entity recognition with character-level models. In Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL, Volume 4. 180–183. DOI:10.3115/1119176.1119204
77. G. Luo, X. Huang, C.-Y. Lin, and Z. Nie. 2015. Joint named entity recognition and disambiguation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’15). 879–880.
78. D. B. Nguyen, M. Theobald, and G. Weikum. 2016. J-NERD: Joint named entity recognition and disambiguation with rich linguistic features. Trans. Assoc. Comput. Linguist. 4 (2016), 215–229. DOI:10.1162/tacl_a_00094
79. W. Liao and S. Veeramachaneni. 2009. A simple semi-supervised algorithm for named entity recognition. In Proceed-ings of the NAACL HLT Workshop on Semi-Supervised Learning for Natural Language Processing. 58–65. Retrieved from http://dl.acm.org/citation.cfm?id=1621829.1621837.
80. O. Etzioni et al. 2005. Unsupervised named-entity extraction from the web: An experimental study. Artif. Intell. 165, 1 (2005), 91–134. DOI:10.1016/j.artint.2005.03.001
81. D. Nadeau, P. Turney, and S. Matwin. 2006. Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity. Adv. Artif. Intell. Lecture Notes in Computer Sciences, vol. 4013. Springer, 266–277. DOI:10.1007/11766247_23