场景理解任务中的多任务学习与不确定性
【摘 要】 许多景深学习应用受益于具有多个回归和分类目标的多任务学习。在本文中,我们观察到此类系统的性能在很大程度上取决于每个任务损失之间的相对权重。手动调整这些权重是困难且昂贵的,这使多任务学习在实践中令人望而却步。我们提出了一种多任务景深学习的原理性方法,它通过考虑每个任务的同质不确定性来权衡多个损失函数。这使我们能够在分类和回归任务中同时学习具有不同尺度或类别的各种数据。我们的模型从单眼输入图像中学习了逐像素的景深回归、语义分割和实例分割。也许会令人惊讶,我们发现,该模型能够学得多任务的权重,并且其性能胜过了在每个任务上单独训练的模型。
【原 文】 Kendall, A., Gal, Y., and Cipolla, R. 2018. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CV ...