发现任务索引帖
待完善
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
非参数贝叶斯模型索引帖
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
多视图表示学习概览
【摘 要】 表示学习是一种训练机器学习模型的特殊类型,它学着将原始的输入数据变换为对实现未来任务更有用的新形式。近年关于表示学习的研风头日胜,因为在很多实际工作中,增加预训练以学习有用的表示,确实提升了很多下游任务的性能。本文主要对表示学习的门类和方法做一概述,文章内容主要来自 Murphy 的《Machine Learning: Advanced Topics》第 32 章。
【参 考】 李沐老师讲论文系列
自监督学习有生成式学习和对比学习,对比学习需要从无标注的数据中学习特征表示,并用于下游任务中。指导原则是: 通过构造相似实例和不相似实例,学习一个表示学习模型,使得相似的实例在投影空间中较接近,不相似的实例在投影空间中距离较远。
对比学习有三个关键问题:
正负样本的构造
编码器的设计
Loss函数的选取。
过去几年,尤其是2018年开始到现在,对比学习在计算机视觉领域的发展可以划成四个阶段:
2018~2019年中,Inst Disc、CPC、CMC等方法和模型都还没有统一,目标函数和代理任务也还没有统一;
2019~2020年中,SimCLR、Moco、CP ...
表示学习概览
【摘 要】 表示学习是一种训练机器学习模型的特殊类型,它学着将原始的输入数据变换为对实现未来任务更有用的新形式。近年关于表示学习的研风头日胜,因为在很多实际工作中,增加预训练以学习有用的表示,确实提升了很多下游任务的性能。本文主要对表示学习的门类和方法做一概述,文章内容主要来自 Murphy 的《Machine Learning: Advanced Topics》第 32 章。
【参 考】 Murphy, 《Machine Learning: Advanced Topics》ch. 20
【思维导图】
1 概述
表示学习是一种训练机器学习模型以将原始输入变换为更容易解决新任务的形式的范式。与在训练时就已经知道了任务的监督学习不同,表示学习通常假设我们并不知道希望解决的任务是什么。但如果没有这些知识,是否真的可以学习到对后续任务有用的输入呢?
表示学习存在可能性的证据之一来自我们自身。人类可以快速形成对新类的丰富表示,并且支持多种行为:找到该类的更多实例,将该实例分解为多个部分,从该类生成新实例等。但是,很难直接指定我们希望机器学习系统学习哪些表示。我们可能希 ...
高斯过程混合模型
〖摘要〗 在很多模型假设中,存在各种形式的隐变量和隐结构,其目的是使高维数据能够得到足够地解释,以发现或挖掘隐藏在可观测数据深层的知识或信息。我们可以将此类模型暂时称为 发现模型 或者 广义隐变量模型。本文是此类模型的一个总揽,大部分内容摘自 Murphy 的《机器学习:高级主题》的第 27 章。
在本部分中,我们专注于能够为
问题提出
发现模型假设我们能够观测到的数据 x\boldsymbol{x}x 是由某些底层的潜在因素 z\boldsymbol{z}z ( 通常是低维的 )导致,并且通常 z\boldsymbol{z}z 代表了世界的某种 “真实” 状态。至关重要的是,这些潜在因素通常被认为对模型的最终用户有意义 ( 也就是说,评估此类模型需要领域专业知识,具有可解释性 )。
我们的目的是通过对可观测数据 x\boldsymbol{x}x 的处理,得到潜在因素 z\boldsymbol{z}z 的底层作用机理, 进而能够给可观测数据的生成作出一个合理的解释。
这种反向建模方法广泛用于科学和工程中,其中 z\boldsymbol{z}z 代表了自然界中待估计的潜在状态 ...
狄利克雷过程混合模型
〖摘要〗 在很多模型假设中,存在各种形式的隐变量和隐结构,其目的是使高维数据能够得到足够地解释,以发现或挖掘隐藏在可观测数据深层的知识或信息。我们可以将此类模型暂时称为 发现模型 或者 广义隐变量模型。本文是此类模型的一个总揽,大部分内容摘自 Murphy 的《机器学习:高级主题》的第 27 章。
在本部分中,我们专注于能够为
问题提出
发现模型假设我们能够观测到的数据 x\boldsymbol{x}x 是由某些底层的潜在因素 z\boldsymbol{z}z ( 通常是低维的 )导致,并且通常 z\boldsymbol{z}z 代表了世界的某种 “真实” 状态。至关重要的是,这些潜在因素通常被认为对模型的最终用户有意义 ( 也就是说,评估此类模型需要领域专业知识,具有可解释性 )。
我们的目的是通过对可观测数据 x\boldsymbol{x}x 的处理,得到潜在因素 z\boldsymbol{z}z 的底层作用机理, 进而能够给可观测数据的生成作出一个合理的解释。
这种反向建模方法广泛用于科学和工程中,其中 z\boldsymbol{z}z 代表了自然界中待估计的潜在状态 ...
发现模型概览
发现模型概览
〖摘要〗 在很多模型假设中存在各种形式的隐变量和隐结构,其目的是使高维数据能够得到足够地解释,以便发现或挖掘隐藏在可观测数据深层的知识或信息。我们将此类模型称为 发现模型 或者 广义隐变量模型。本文是此类模型的一个总揽,大部分内容摘自 Murphy 的《机器学习:高级主题》的第 27 章。
问题提出
发现模型假设我们能够观测到的数据 x\boldsymbol{x}x 是由某些底层的潜在因素 z\boldsymbol{z}z ( 通常是低维的 )导致,并且通常 z\boldsymbol{z}z 代表了世界的某种 “真实” 状态。至关重要的是,这些潜在因素通常被认为对模型的最终用户有意义 ( 也就是说,评估此类模型需要领域专业知识,具有可解释性 )。
我们的目的是通过对可观测数据 x\boldsymbol{x}x 的处理,得到潜在因素 z\boldsymbol{z}z 的底层作用机理, 进而能够给可观测数据的生成作出一个合理的解释。
这种反向建模方法广泛用于科学和工程中,其中 z\boldsymbol{z}z 代表了自然界中待估计的潜在状态,而 x\boldsy ...
决策任务索引帖
待完善
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
决策模型概览
决策模型概览
〖摘要〗 在很多模型假设中,存在各种形式的隐变量和隐结构,其目的是使高维数据能够得到足够地解释,以发现或挖掘隐藏在可观测数据深层的知识或信息。我们可以将此类模型暂时称为 发现模型 或者 广义隐变量模型。本文是此类模型的一个总揽,大部分内容摘自 Murphy 的《机器学习:高级主题》的第 27 章。
在本部分中,我们专注于能够为
问题提出
发现模型假设我们能够观测到的数据 x\boldsymbol{x}x 是由某些底层的潜在因素 z\boldsymbol{z}z ( 通常是低维的 )导致,并且通常 z\boldsymbol{z}z 代表了世界的某种 “真实” 状态。至关重要的是,这些潜在因素通常被认为对模型的最终用户有意义 ( 也就是说,评估此类模型需要领域专业知识,具有可解释性 )。
我们的目的是通过对可观测数据 x\boldsymbol{x}x 的处理,得到潜在因素 z\boldsymbol{z}z 的底层作用机理, 进而能够给可观测数据的生成作出一个合理的解释。
这种反向建模方法广泛用于科学和工程中,其中 z\boldsymbol{z}z 代表了自然界中待 ...