经验贝叶斯方法简介
1 概念理解
传统贝叶斯方法需要事先指定参数(或隐变量)的先验分布以及模型的似然,而后利用已知数据对先验进行更新,最终得到后验分布。当先验分布完全未知时,推断会受到一定的影响。如果在创建后验概率分布之前,先利用某些方法来估计先验概率分布的参数,将使推断得到优化,而这就是经验贝叶斯方法的主要思想。
经验贝叶斯方法是 “在构建后验概率分布之前,估计和更新先验概率分布参数(即超参数)的方法集合”。该技术仍然遵循贝叶斯统计模型,但增加了估计先验概率分布的过程。
经验贝叶斯方法是一种统计推断过程,该方法根据经验数据估计先验概率分布。 此方法与标准贝叶斯方法形成对比,标准贝叶斯方法在观察到任何数据之前,先验分布都是固定的。经验贝叶斯可被视为对分层模型(Hierarchical Model)的完全贝叶斯处理的一种近似,只是其中最高层次级别的参数被设置为其最可能的值,而不是像完全贝叶斯处理一样通过积分获得。
经验贝叶斯也称为 最大边缘似然法,到目前仍然是一种设置超参数的便捷方法,但自 2000 年代以来,随着性能良好的计算技术的可用性不断提高,它已逐步被完全贝叶斯分层分析方法所取代。
(1 ...