稀疏变分方法和随机过程之间的 KL 散度
【摘 要】 学习归纳变量的变分框架 (Titsias, 2009a) 对高斯过程文献产生了很大影响。该框架可以解释为最小化近似过程和后验过程之间严格定义的 Kullback-Leibler 散度。据我们所知,迄今为止,这种联系在文献中并未被提及。在本文中,我们对有关该主题的文献进行了实质性的概括。我们给出了无限索引集假设下的新证明,它允许不属于训练集的归纳点和依赖于所有函数值集的似然。然后,我们讨论了增广索引集,并表明,与以前的工作相反,增广的边缘一致性不足以保证变分推断近似与原始模型的一致性。我们进一步推导出了获得这种保证的额外条件。最后,我们以 域间稀疏近似 和 Cox 过程 为例,展示了我们的稀疏近似框架。 【原 文】 Matthews, A.G. de G. et al. (2015) ‘On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes’. arXiv. Available at:...
精确高斯过程的GPU并行推断程序
【摘 要】 高斯过程 (GP) 是灵活的非参数模型,其容量随着可用数据的增加而增长。但标准推断程序的计算局限性将精确高斯过程限制在训练点在一万以内的问题上,对于更大的数据集则需要进行近似。在本文中,我们为精确高斯过程开发了一种可扩展的方法,该方法利用多 GPU 并行化、线性共轭梯度等方法,仅通过矩阵乘法访问协方差矩阵。通过划分和分布协方差矩阵乘法,我们证明,可以在不到 2 小时的时间内训练一个超过一百万个点的精确高斯过程,这是以前认为不可能完成的任务。此外,我们的方法具有普遍适用性,不受网格数据或特定核类型的限制。通过这种可扩展性,我们首次对具有 $10^4$ − $10^6$ 个数据点的数据集,进行了精确高斯过程与可扩展高斯过程近似之间的比较,显示出显著的性能改进。 【原 文】 Wang, K.A. et al. (2019) ‘Exact Gaussian Processes on a Million Data Points’. Available at: https://doi.org/10.48550/ARXIV.1903.08114. 1 引言高斯过程 (GP)...