数据增强方法索引帖
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
🔥 神经网络中的不确定性研究综述
【摘 要】 在过去十年中,神经网络几乎触及了每一个科学领域,并成为各种现实世界应用的关键部分。由于越来越多的传播和使用,人们对神经网络预测结果的信心也变得越来越重要。但基础的神经网络要么无法提供不确定性估计,要么存在过于自信或信心不足的问题。为了克服这个问题,许多研究人员致力于理解和量化神经网络中的预测不确定性。前人已经确定了不同类型和来源的不确定性,并提出了各种估计和量化神经网络中不确定性的方法。本文全面概述了神经网络中的不确定性估计,回顾了该领域的最新进展,突出了当前的挑战,并确定了潜在的研究机会。它旨在为任何对神经网络中的不确定性估计感兴趣的人提供一个宽泛的概述和介绍,而不预先假定读者具备该领域的先验知识。为此,论文首先对不确定性来源这一关键因素进行了全面介绍,并将其分为(可还原的) 模型不确定性 和(不可还原的) 数据不确定性 。介绍了基于单一确定性神经网络、贝叶斯神经网络、神经网络集成、测试时数据增强 四种不确定性的建模方法,讨论了这些领域的不同分支及最新发展。在实际应用方面,我们讨论了各种不确定性的测量方法,以及神经网络的校准方法,概述了现有基线和可用成果。来自 ...