➁ 核方法:高斯过程
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》;《深度神经网络作为高斯过程》;《深度高斯过程的重要性加权变分推断》
p{text-indent:2em;2}
1 一元高斯分布
我们从最简单最常见的一元高斯分布开始,其概率密度函数为
p(x)=1σ2πexp(−(x−μ)22σ2)(1)p(x) = \frac{1}{\sigma\sqrt{2\pi}}\exp (-\frac{(x-\mu)^2}{2\sigma^2}) \tag{1}
p(x)=σ2π1exp(−2σ2(x−μ)2)(1)
其中 μ\muμ 和 σ\sigmaσ 分别表示均值和方差,这个概率密度函数曲线画出来就是我们熟悉的钟形曲线,均值和方差唯一地决定了曲线的形状。
...
➁ 核方法:支持向量机
〖摘要〗 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
〖参见〗
《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;}
1 支持向量机
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
...
➁ 核方法:概述
【摘要】核方法
【原文】
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 核方法
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerTe ...