🔥 深度核学习(DKL)
【摘 要】 我们引入了可扩展的深度核,它结合了深度学习架构的结构特性和核方法的非参数灵活性。具体来说,我们使用局部核插值、归纳点和结构利用(Kronecker 和 Toeplitz)代数来转换具有深度架构的谱混合基核的输入,以获得可扩展的核表示。这些封闭形式的核可以用作标准核的直接替代品,具有表达能力和可扩展性方面的优势。我们通过高斯过程的边缘似然共同学习这些核的属性。 nnn 个训练点的推断和学习成本为 O(n)\mathcal{O}(n)O(n),每个测试点的预测成本为 O(1)\mathcal{O}(1)O(1)。在大量多样的应用程序集合中,包括具有 200200200 万个样本的数据集,我们展示了具有灵活核学习模型和独立深度架构的可扩展高斯过程的改进性能。
【原 文】 Wilson, A.G. 等 (2015) ‘Deep Kernel Learning’. arXiv. Available at: http://arxiv.org/abs/1511.02222 (Accessed: 31 December 2022).
1 简介
MacKay (1998) [15 ...
深度高斯过程(DGP)
【摘 要】 深度高斯过程是一种基于高斯过程映射的深度信念网络。数据被建模为一个多元高斯过程的输出,而该高斯过程的输入由另一个高斯过程控制。单层模型等效于标准高斯过程或高斯过程隐变量模型 (GP-LVM)。我们通过近似变分边缘化在模型中进行推断。这导致用于做模型选择(层数和每层节点数)的边缘似然具备一个严格的下界。深度信念网络通常适用于使用随机梯度下降(SGD)做优化的大型数据集。但即使在数据稀缺的情况下,本文方法的完全贝叶斯处理也允许其应用深层模型。利用本文变分边界做出的模型选择情况表明,即使对仅包含 150 个样本的数字字符数据集进行建模,5 层的网络层次结构也是合理的。
【原 文】 Damianou, A. and Lawrence, N.D. (2013) ‘Deep gaussian processes’, in Artificial intelligence and statistics. PMLR, pp. 207–215.
1 概述
使用神经网络架构来实现概率建模,已经成为机器学习的一个深入研究领域。深度学习领域的一些新进展 [Hinton and Osind ...