概率 PCA 模型
【摘 要】概率 PCA 模型(pPCA)。
1️⃣ 初始变分自编码器
【摘 要】本文从自编码器入手,讨论了自编码器与变分自编码器之间的本质区别,并简单介绍了变分自编码器的工作原理,适合于认识变分自编码器的第一篇入门读物。
【原 文】Joseph Rocca & Baptiste Rocca,Understanding Variational Autoencoders VAEs
1. 简介
在过去的几年中,由于一些惊人的进步,基于深度学习的生成模型越来越受到关注。依靠大量数据,精心设计的网络结构和训练技术,深度生成模型已经显示出了令人难以置信的能力,可以生成高度逼真的各种内容,例如图像,文本和声音。在这些深度生成模型中,有两个类别脱颖而出,值得特别关注:生成对抗网络(GAN)和 变分自编码器(VAE)。
图 1 VAE 生成的人脸图片
简而言之,VAE 是一种自编码器,在训练过程中其编码的概率分布是正则化的,以确保其在隐空间具有良好特性,进而允许我们生成一些新数据。术语 “变分” 源自统计中的 正则化 和 变分推断 方法。
虽然最后两句话很好地概括了 VAE 的概念,但是它们也会引出很多问题。什么是自编码器?什么是隐空间?为什么要 ...