空间统计学概论
空间统计学概论
1 统计学的两大流派
(1)频率学派
认为模型的待估计参数是一个未知的常数,而样本是随机的,通过对随机样本的分析,可以计算获得参数的值。
基本思想(对事件建模)
「随机事件本身具有某种客观的随机性」,需要研究一系列工具来刻画「事件」本身
事件A在独立重复试验中发生的频率趋于极限 ppp ,那么极限 ppp 就是该事件的概率
参数估计时
主要是对模型做假设,但不对参数的分布做假设
求参数符合样本的最优化解,通过正则化解决过拟合问题
如:极大似然估计、最小交叉熵、最小二乘估计…
预测时
预测的结果:参数支持下确定的结果
结果不确定性的量化:通过方差来量化不确定性
核心体现为最优化问题
需要通过最优化算法求得参数的数值解
代表性模型
SVM等各种统计机器学习方法、前馈神经网络…
(2)贝叶斯学派
认为模型的待估计参数是一个随机变量,而样本是固定的,通过对样本的学习不断更新经验,能够使对参数的分布认识更准确。
基本思想(对人的知识建模)
「随机事件」是因「观察者」知识状态中尚未包含该事件的结果而导致,需要通过观察 ...