基于空间滤波的大型数据集空间变系数建模
〖摘 要〗 虽然空间变系数 (SVC) 建模在应用科学中很流行,但其计算负担很大。如果考虑空间变系数的多尺度属性,则尤其如此。鉴于此背景,本研究开发了一种基于 Moran 特征向量的空间变系数 (M-SVC) 建模方法,可有效地估计多尺度空间变系数模型。该估计通过 (1) 秩降低、(2) 预压缩和 (3) 顺序似然最大化来加速。步骤 (1) 和 (2) 从似然函数中消除样本大小 N;在这些步骤之后,似然最大化成本与 N 无关。步骤 (3) 进一步加速似然最大化,因此即使空间变系数的数量 K 很大,也可以估计多尺度空间变系数模型。通过蒙特卡罗模拟实验将 M-SVC 方法与地理加权回归 (GWR) 进行比较。这些模拟结果表明,当 N 很大时,本文方法比地理加权回归快得多,尽管数值估计了 2K 个参数,而地理加权回归仅数值估计了 1 个参数。然后,将所提出的方法应用于土地价格分析作为说明。开发的空间变系数估计方法在 R 包 “spmoran” 中实现
〖原 文〗 Murakami, D. and Griffith, D.A. (2019) ‘Spatially varying c ...
基于空间滤波方法的机器学习模型
【摘 要】 空间统计模型对于地理空间数据建模非常有效,因为它们考虑了地理空间和其他非空间协变量的空间信息,使它们能够通过解决空间依赖性来最小化空间自相关。相比之下,机器学习模型在预测非空间数据方面非常有效,但由于空间自相关问题,它们在建模和预测地理空间数据方面效果不佳。在用于地理空间数据建模的机器学习模型中,经常出现的局限性之一是没有将地理空间的空间信息融合到模型中的标准方法,因此机器学习模型中无法最小化空间自相关。
在本研究中,我们提出了一种局部空间信息嵌入的机器学习方法,该方法能够在预测地理空间现象的同时,通过解决空间依赖性来最小化空间自相关。
我们的研究应用 特征向量空间滤波方法 从空间坐标中提取近似特征向量,并将它们作为一组向量与选定的非空间协变量一起嵌入到机器学习模型中。我们比较了传统空间统计模型和基于机器学习的模型之间的相对预测性能。实验表明,在机器学习模型规范中结合空间过滤的特征向量来表示空间信息可显著提高预测性能。
【原 文】 M. D. Islam, B. Li, C. Lee, and X. Wang, “Incorporating spatial in ...
空间滤波方法
【摘要】 本文关注的重点是特征向量空间滤波方法(Eigenvectors Spatial Filtering, 特征向量空间滤波)。这是一种方法已广泛应用于地理学、区域科学、城市研究、经济学、生态学和流行病学等诸多领域的局部空间异质性建模方法。与地理加权回归方法探求回归系数背后的空间模式不同,空间滤波方法旨在检测空间数据中残差的空间模式。本文将介绍特征向量空间滤波方法的基础理论和扩展方法,并且讨论应用此方法时需要考虑和避免的问题。
【原文】 Y. Yamagata and H. Seya, Eds., Chapter 6, Spatial analysis using big data: methods and urban applications. London, United Kingdom ; San Diego, CA: Academic Press, an imprint of Elsevier, 2020.
1 简介
本文关注的重点是空间变系数模型的发展,尤其是其中的特征向量空间滤波方法(Eigenvectors Spatial Filtering, 特征向量空 ...