机器学习的五大流派
机器学习的五大流派
一、五大流派
二、发展历程
(1)1980 年代
主导流派:符号主义
架构:服务器或大型机
主导理论:知识工程
基本决策逻辑:决策支持系统,实用性有限
(2)1990 年代到 2000 年
主导流派:贝叶斯
架构:小型服务器集群
主导理论:概率论
分类:可扩展的比较或对比,对许多任务都足够好了
(3)2010 年代早期到中期
主导流派:联结主义
架构:大型服务器农场
主导理论:神经科学和概率
识别:更加精准的图像和声音识别、翻译、情绪分析等
(4)2010 年代末期
主导流派:联结主义+符号主义
架构:许多云
主导理论:记忆神经网络、大规模集成、基于知识的推理
简单的问答:范围狭窄的、领域特定的知识共享
(5)2020 年代+
主导流派:联结主义+符号主义+贝叶斯+……
架构:云计算和雾计算
主导理论:感知的时候有网络,推理和工作的时候有规则
简单感知、推理和行动:有限制的自动化或人机交互
(6)2040 年代+
主导流派:算法融合
架构:无处不在的服务器
主导理论:最佳组合的元学习
感知和响应:基于通过多种学习方式获得的知识或 ...