空间思维及贝叶斯方法
【摘 要】本文首先从时空数据分析面临的空间依赖性、空间异质性、数据稀疏性和不确定性四个挑战谈起,阐述了空间统计思维的重要性。在简单描述了频率派思想和贝叶斯派思想的区别后,重点阐述了贝叶斯方法的优点和可行性,尤其是其中贝叶斯分层模型和贝叶斯空间计量学模型。本文节选自 Haining 的空间和时空数据建模一书,
【原 文】 R. P. Haining and G. Li, Chapter 1 ,Modelling spatial and spatial-temporal data: a Bayesian approach. Boca Raton: CRC Press, Taylor & Francis, 2020.
1 时空数据分析面临的挑战
1.1 空间依赖性
对于空间和时空数据,在空间和/或时间上靠得很近的值不太可能是独立的。依赖性(或缺乏独立性)是空间和时空数据的基本属性。在某个时间间隔内对某个区域观察到的数据值通常包含有关同一变量在同一(或附近)时间窗口内其他(附近)区域的数据值的一些信息。例如,仔细检查图 1.1 会发现,尽管存在例外情况(例如,参见标记为 x ...
点参考数据的贝叶斯建模软件spBayes
原文: Finley, A. O., Banerjee, S., & E.Gelfand, A. (2015). SpBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models. Journal of Statistical Software, 63(13). https://doi.org/10.18637/jss.v063.i13
Andrew O. Finley,密歇根州立大学
Sudipto Banerjee,加州大学洛杉矶分校
Alan E. Gelfand, 杜克大学
1 模型框架的定义
贝叶斯高斯空间回归模型是一个分层建模框架:
p(θ)×N(β∣μβ,Σβ)×N(α∣0,K(θ))×N(y∣Xβ+Z(θ)α,D(θ))(1)p(\boldsymbol{\theta}) \times \mathcal{N}(\boldsymbol{\beta} | \boldsymbol{\mu}_{\beta},\Sigma_{\beta}) \ti ...
空间数据贝叶斯建模方法索引帖
基础
点参考数据
面元数据
点模式数据