➀ 基于实例的方法: 核密度估计( KDE )
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。 【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》 p{text-indent:2em;2} 1 KDE 模型 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid =...
哈密顿蒙特卡洛(HMC)方法
哈密顿蒙特卡洛( HMC )采样方法〖摘要〗快速给出下一个状态的提议值是 MCMC 方法的关键环节。对于状态有限的离散概率质量函数而言,可以采用随机游走的方式选择下一个状态的提议值,然后使用 Metropolis 更新步骤;但对于连续的概率密度函数而言, 随机游走方式显然不利于快速遍历状态空间。哈密顿蒙特卡洛方法利用 Hamilton 动力学的可逆性、能量守恒、体积保持等特性,为构造马氏链提供了一种快速生成提议状态的方法,该方法与 MCMC 中的 Metropolis 更新(或其他更新方法)步骤结合,可以快速生成给定概率分布的样本。 〖原文〗 Radford M. Neal (2011), MCMC Using Hamiltonian Dynamics, Handbook of Markov Chain Monte Carlo. 1 概述马尔可夫链蒙特卡罗 (MCMC) 起源于 Metropolis 等人 的经典论文 (1953)。它被用于模拟理想化状态下分子系统的状态分布。不久之后,引入了另一种分子模拟方法( Alder 和 Wainwright,1959...
黑盒变分推断
【摘要】 变分推断已经成为一种广泛使用的方法,用于近似隐变量的复杂后验分布。 然而,传统方法推导出一个变分推断算法需要进行大量的特定模型分析。 这可能会阻碍我们快速开发和探索解决问题的模型。 本文中提出了一种黑盒变分推断算法,该算法可以快速应用于许多模型,几乎不需要额外的推导。我们采用的方法是基于变分目标做随机优化,其中噪声梯度由变分分布的蒙特卡洛样本计算得出,进而避免了对梯度解析形式的推导。考虑到随机优化存在方差变大的问题, 我们同时开发了一些减少梯度方差的方法,并始终保持了避免推导的简易性。 我们将本方法与相应的黑盒采样方法进行对比评估,发现本方法相比于采样方法,能更快达到较好的预测似然。 最后,通过快速构建和评估医疗数据中的几个模型,我们证明了黑盒变分推断法可以轻松探索更为广阔的模型空间。 【原文】Ranganath, R., Gerrish, S., and Blei, D. M. (2014). Black box variational inference. In Artificial Intelligence and Statistics, Vol...
使用预测方差削减加速随机梯度下降
【摘要】 【原文】R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In NIPS, 2013 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; ...
随机变分推断
【摘 要】 随机变分推断是一种用于近似后验分布的可扩展算法。我们为一般性的概率模型开发了该技术,并且用两个概率主题模型(潜狄利克雷分配和分层狄利克雷过程主题模型)来证明了它的可用性。我们使用随机变分推断分析了几个大型文档集合:来自 Nature 的 30 万篇文章、来自《纽约时报》的 180 万篇文章和来自维基百科的 380 万篇文章。结果表明:随机变分推断可以轻松处理如此大规模的数据集,并且优于只能处理较小数据集的传统变分推断。我们还表明贝叶斯非参数主题模型的表现要优于参数模型。 【原 文】 Hoffman, M., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic Variational Inference. arXiv: http://arxiv.org/abs/1206.7051 1 问题提出现代数据分析需要使用海量数据进行计算。想象下如下案例: (1) 我们拥有 200...
平均场(MeanField )变分推断
暂空缺。 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content:...
MCMC 采样编程实战
MCMC 采样方法编程应用实战【摘要】贝叶斯统计需要在贝叶斯定理基础上,通过参数先验和数据似然对参数的后验概率分布作出推断。从推断精度上区分,贝叶斯推断方法大致包含精确推断和近似推断两大类,其中精确推断常见有变量消除法(Variable Elimination, VE)和信念传播法(Belief Propagation, BP);而近似推断方法主要是马尔科夫链蒙特卡洛法(Mente Carlo, MCMC)和变分近似推断法(Variational Inference,VI),从原理上来说,前者属于随机性近似推断,而后者属于确定性近似推断。本文从概率编程角度,引导读者了解 MCMC 方法的使用过程,以便形成整体印象。 【原文】 MCMC sampling for dummies — While My MCMC Gently Samples (twiecki.io) p{text-indent:2em;2} 引子当谈论贝叶斯统计和概率编程时,通常会掩藏统计推断实际执行的细节,将其视为黑匣子。概率编程好处在于...
一篇文章读懂 MCMC 方法
马尔可夫链蒙特卡洛( MCMC )采样【摘要】传统的蒙特卡洛方法采用随机抽样的方式获得样本,其中大量随机抽取的样本要么被拒绝(拒绝采样)、要么被加权(重要性采样),样本效率不高。因此科学家在思考是否存在一种接受率为 $100%$ 的采样方法。马尔可夫链蒙特卡洛方法真是满足此要求的一种高效采样方法,它充分利用马尔可夫链的可逆性和平稳分布收敛特性,通过一段时间的老化后,所得到的样本能够实现 $100%$ 的接受率。 【原文】 MCMC and Gibbs Sampling 1 问题的提出随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗模拟(Monte Carlo Simulation)。这个方法始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时乌拉姆、冯.诺依曼、费米、费曼、Nicholas Metropolis 等, 在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反应的时候,开始使用统计模拟的方法,并在最早的计算机上进行编程实现。 图 1: 随机模拟与计算机 现代的统计模拟方法最早由数学家乌拉姆提出,被 Metropolis...
直接采样、拒绝采样与重要性采样
直接采样、拒绝采样与重要性采样【摘要】蒙特卡洛(Monte Carlo method)是一种以概率统计理论为指导的重要数值计算方法。它使用随机数来解决随机变量(或随机函数)的期望值积分求解、仿真模拟等非常棘手的计算问题,特别适用于无解析形式的复杂概率分布。根据对蒙特卡洛方法的理解,会发现其中最为核心的部分是如何在给定一个复杂分布时,按照概率随机、高效地获得样本,即采样方法问题。本文将介绍其中最为基础和直觉的几种早期方法,分别是基于 CDF 的直接采样、拒绝采样和重要性采样。 1 直接采样直接采样的思想是:计算机适合于随机的均匀采样,如果能够把任意概率分布的采样转化成对均匀分布的采样,就可以解决采样问题。 假设 $y$ 服从某项分布 $p(y)$,其累积分布函数( CDF )为 $h(y)$,现有均匀分布的样本 $z \sim \operatorname{Uniform}(0,1)$,令 $z = h(y)$,即 $y = h^{-1}(z)$,结果 $y$ 即为对分布 $p(y)$ 的采样。 图 1: 直接采样算法流程 举个例子: 图 2:直接采样示例...
蒙特卡洛方法原理
〖摘要〗贝叶斯统计需要在贝叶斯定理基础上,通过参数先验和数据似然对参数的后验概率分布作出推断。从推断精度上区分,贝叶斯推断方法大致包含精确推断和近似推断两大类,其中精确推断常见有变量消除法(Variable Elimination, VE)和信念传播法(Belief Propagation, BP);而近似推断方法主要是蒙特卡洛法(Mente Carlo, MC)和变分近似推断法(Variational Inference,VI)。蒙特卡洛方法是一种以概率统计理论为指导的重要数值计算方法。它使用随机数来解决随机变量(或随机函数)期望值积分求解、仿真模拟等非常棘手的计算问题,特别适用于没有明确解析形式的复杂概率分布。蒙特卡洛方法中最为核心的部分是如何在给定一个复杂分布时,按照概率随机地、高效地获得样本,即采样方法问题。 〖原文〗蒙特卡洛方法数学基础、蒙特卡洛方法实践 1...