🔥 GeoAI 相关论文索引帖
〖摘 要〗 个人用于整理大规模点参考数据时空统计分析方法的汇总帖,大致分为克里金法和贝叶斯建模、高斯过程及其推断理论、大 n 问题及其对策、并行化策略和方法、与深度学习的结合等部分。目前主要兴趣点在大规模点参考数据的高效计算方法和统计深度学习方面。 1 概览或综述2 位置嵌入3 社会感知4 遥感数据5 地图数据6 位置物联网7 街景数据8 地理知识图谱 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel =...
快速地理加权回归 (FastGWR)
〖摘 要〗 地理加权回归 (GWR) 是一种广泛使用的工具,用于探索地理空间过程的空间异质性。 GWR 计算特定位置的参数估计值,这使得其校准过程需要大量计算。当前开源 GWR 软件可以处理的最大数据点数是标准桌面上的大约 $15,000$ 个观测值。在大数据时代,这严重限制了 GWR 的使用。为了克服这一限制,我们提出了一种高度可扩展的开源 FastGWR 实现,该实现基于 Python 和消息传递接口 (MPI),可扩展到数百万个观测值的数量级。 FastGWR 优化内存使用以及并行化以显著提高性能。为了说明 FastGWR 的性能,对来自洛杉矶市 Zillow 数据集的大约 $130$ 万个单户住宅物业进行了特征房价模型校准,这是将 GWR 应用于这种规模的数据集的首次尝试。结果表明,随着高性能计算 (HPC) 环境中内核数量的增加,FastGWR 呈线性扩展。它还优于当前可用的开源 GWR 软件包,在标准桌面上速度大幅降低——最高可达数千倍。 【原 文】 Li, Z. et al. (2019) ‘Fast Geographically Weighted...
🔥 组合似然法概述
【摘 要】组合似然法是用于超大规模高斯随机场高效计算的主要方法之一,本文提供了对组合似然理论和应用的最新发展调查。论文考虑了一系列应用领域,包括地统计学、空间极值、时空模型、集群和纵向数据以及时间序列等。考虑到 Larribe 和 Fearnhead (2011) 已经发表了在统计遗传学方面的综述论文,本文省略了这一重要应用领域。本文重点介绍了组合似然理论发展、组合似然推断的效率和鲁棒性等知识现状。 【原 文】 Varin, C., Reid, N. and Firth, D. (2011) ‘AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS’, Statistica Sinica, 21(1), pp. 5–42. 1...
深度神经网络和时空数据深度分层模型比较
【摘 要】 时空数据在农业、生态和环境科学中无处不在,研究它们对于理解和预测各种过程非常重要。对随时间变化的空间过程建模的困难之一是必须描述这种过程如何变化的依赖结构的复杂性,以及高维复杂数据集和大型预测域的存在。为非线性动态时空模型 (DSTM) 指定参数化尤其具有挑战性,这些模型在科学上和计算上都非常有用。统计学家开发了深层分层模型,可以适应过程的复杂性以及预测和推断中的不确定性。然而,这些模型可能很昂贵并且通常是特定于应用程序的。另一方面,机器学习社区已经为非线性时空建模开发了替代的“深度学习”方法。这些模型很灵活,但通常不会在概率框架中实现。这两种范式有许多共同点,并提出了可以从每个框架的元素中受益的混合方法。这篇概述论文简要介绍了深度分层 DSTM (DH-DSTM) 框架和机器学习中的深度模型,最后介绍了深度神经网络动态时空模型 (DN-DSTM),将来自 DH-DSTM 和 DN-DSTM 的要素结合起来的最新方法作为插图呈现。 【引 文】 C. K. Wikle, “Comparison of Deep Neural Networks and Deep...
🔥 空间数据和时空数据的统计深度学习
【摘 要】 近年来,深度神经网络模型变得无处不在,并已应用于几乎所有科学、工程和工业领域。这些模型对于在空间(例如,图像)和时间(例如,序列)中具有强依赖性的数据特别有用。事实上,深度模型也被统计界广泛用于对空间和时空数据进行建模,例如,通过使用多级贝叶斯层次模型和深度高斯过程。在这篇综述中,我们首先概述了用于建模空间和时空数据的传统统计和机器学习视角,然后重点介绍了最近为隐过程、数据和参数定义开发的各种混合模型。这些混合模型将统计建模思想与深度神经网络模型相结合,以利用每种建模范式的优势。最后,我们概述了已证明对这些混合模型有用的计算技术,并简要讨论了未来的研究方向 【原 文】 K. Wikle and A. Zammit-Mangion, “Statistical Deep Learning for Spatial and Spatio-Temporal Data.” arXiv, Jun. 05, 2022. Accessed: Nov. 13, 2022. [Online]. Available:...
克里金和高斯过程的关系
克里金法 源于地统计学,在统计学中也称为 高斯过程回归,是一种基于高斯过程的空间插值方法。在适当的先验假设下,克里金法在未采样位置提供最佳线性无偏预测 (BLUP)。该方法广泛应用于空间分析和计算机实验领域。该方法的理论基础由法国数学家 Georges Matheron 于 1960 年根据 Danie G. Krige 的硕士论文开发。 Krige 试图根据几个钻孔的样本来估计黄金最有可能的分布。 在面向二三维空间时,从数学上两者本质上是相同的。 两者之间的主要区别特征见下表: Table 1. 区分克里金和现代高斯过程的主要特征 特征 高斯过程 克里金 Bayesian vs...
空间思维及贝叶斯方法
【摘 要】本文首先从时空数据分析面临的空间依赖性、空间异质性、数据稀疏性和不确定性四个挑战谈起,阐述了空间统计思维的重要性。在简单描述了频率派思想和贝叶斯派思想的区别后,重点阐述了贝叶斯方法的优点和可行性,尤其是其中贝叶斯分层模型和贝叶斯空间计量学模型。本文节选自 Haining 的空间和时空数据建模一书, 【原 文】 R. P. Haining and G. Li, Chapter 1 ,Modelling spatial and spatial-temporal data: a Bayesian approach. Boca Raton: CRC Press, Taylor & Francis, 2020. 1 时空数据分析面临的挑战1.1 空间依赖性对于空间和时空数据,在空间和/或时间上靠得很近的值不太可能是独立的。依赖性(或缺乏独立性)是空间和时空数据的基本属性。在某个时间间隔内对某个区域观察到的数据值通常包含有关同一变量在同一(或附近)时间窗口内其他(附近)区域的数据值的一些信息。例如,仔细检查图 1.1...
点参考数据的贝叶斯建模软件spBayes
原文: Finley, A. O., Banerjee, S., & E.Gelfand, A. (2015). SpBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models. Journal of Statistical Software, 63(13). https://doi.org/10.18637/jss.v063.i13 Andrew O. Finley,密歇根州立大学Sudipto Banerjee,加州大学洛杉矶分校Alan E. Gelfand, 杜克大学 1 模型框架的定义贝叶斯高斯空间回归模型是一个分层建模框架: $$p(\boldsymbol{\theta}) \times \mathcal{N}(\boldsymbol{\beta} | \boldsymbol{\mu}{\beta},\Sigma{\beta}) \times \mathcal{N}(\boldsymbol{\alpha} | 0,...
Cressie 的最新空间统计论述
【阅读建议】 本文是 Cressie 在 2021 年新撰写的一篇综述类文章,其主要看点包括:(1)用统一的形式化框架实现了点参考数据、面元数据、点模式数据的建模;(2)对多变量空间统计建模的统一形式化;(3)大数据的空间离散化处理方法(此处尚未理解其优势所在,需要进一步阅读引用的论文); 【摘 要】 空间统计是一个致力于与空间标签相关数据统计分析的研究领域。地理学家通常将 “位置信息” 与 “属性信息” 联系起来,并且定义了一个被称为 “空间分析” 的研究领域。许多操作空间数据的方法都是由算法驱动的,缺少与之相关的不确定性量化。如果空间分析是统计的(即结合了不确定性量化),则它属于空间统计的研究范畴。空间统计模型的主要特征是邻近的属性值比远处的属性值在统计上更相关,这也被称为地理学第一定律。 【原 文】 N. Cressie and M. T. Moores, “Spatial Statistics,” 2021, doi: 10.48550/ARXIV.2105.07216. 【参 考】 1...
空间随机场及其建模方法
【摘 要】 空间数据集通常被分为三种类型:点参考数据、面元数据和点模式数据,本文重点介绍点参考数据的建模基础–空间随机场,讨论了空间随机场的一些基本假设和性质,及其形式化定义。 【原 文】 O. Schabenberger and C. A. Gotway, Chapter 2,Statistical methods for spatial data analysis. Boca Raton: Chapman & Hall/CRC, 2005. 1 随机过程与随机场(1)随机过程与随机场 随机过程是随机变量族或集合,其成员可以根据某种度量来识别或索引。例如: 时间序列 $Y (t),t = t_1,\ldots,t_n$ 由观测该序列的时间点 $t_1,\ldots,t_n$ 索引。 空间过程也是随机变量的集合,只是其中的随机变量由包含空间坐标 $\mathbf{s} =[s_1,s_2, ···,s_d]^\prime$ 的某个集合 $D \subset \mathbb{R}^d$ 索引。对于平面内的一个过程,即...