从自然语言文本中收割地理空间大数据
p{text-indent:2em}
从自然语言文本中收割地理空间大数据
【评论】在非结构化自然语言本文中获取地理相关信息是一个很有意思而又有难度的话题,也是知识层次体系结构中,“数据–>信息–>知识 ”最完整的过程体现。Yingjie Hu 等在德国慕尼黑技术大学知名教授Martin WerNER的新书《Handbook of Big Geospatial Data》中,专门撰写了名为《Harvesting big geospatial data from natural language texts》的一章,来阐述相关的技术进展状态。
【原文摘要】大量地理空间数据存在于自然语言文本中,例如报纸、维基百科文章、社交媒体帖子、旅游博客、在线评论和历史档案。与美国地质调查局和国家统计局收集的更传统、更结构化的地理空间数据相比,从这些非结构化文本中获得的地理空间数据具有独特的优势。它们捕捉人类对不同地点的感受,反映不同地理区域的近实时态势,或记录其他方式无法获得的重要历史信息。此外,这些非结构化文本中的地理空间数据在数量、速度和多样性方面通常都很大。本文介绍了从自然 ...