哈密顿蒙特卡洛(HMC)方法
哈密顿蒙特卡洛( HMC )采样方法
〖摘要〗快速给出下一个状态的提议值是 MCMC 方法的关键环节。对于状态有限的离散概率质量函数而言,可以采用随机游走的方式选择下一个状态的提议值,然后使用 Metropolis 更新步骤;但对于连续的概率密度函数而言, 随机游走方式显然不利于快速遍历状态空间。哈密顿蒙特卡洛方法利用 Hamilton 动力学的可逆性、能量守恒、体积保持等特性,为构造马氏链提供了一种快速生成提议状态的方法,该方法与 MCMC 中的 Metropolis 更新(或其他更新方法)步骤结合,可以快速生成给定概率分布的样本。
〖原文〗 Radford M. Neal (2011), MCMC Using Hamiltonian Dynamics, Handbook of Markov Chain Monte Carlo.
1 概述
马尔可夫链蒙特卡罗 (MCMC) 起源于 Metropolis 等人 的经典论文 (1953)。它被用于模拟理想化状态下分子系统的状态分布。不久之后,引入了另一种分子模拟方法( Alder 和 Wainwright,1959 年),其 ...