主动学习与深度贝叶斯网络(图像分类任务)
【摘 要】尽管主动学习是机器学习的重要支柱,但深度学习工具在其中应用并不普遍。在主动学习场景中使用深度学习会带来一些困难。首先,主动学习处理的对象是小数据,而深度学习的最新进展主要源于其对大量数据的依赖。其次,许多采集能力依赖于模型的不确定性估计,而在深度学习中很少表示模型的不确定性。本文基于深度学习的贝叶斯方法,以实用方式将贝叶斯深度学习的最新进展结合到了主动学习框架中。我们为高维数据开发了一个主动学习框架,这项任务在已有文献非常匮乏的情况下极具挑战性。利用贝叶斯卷积神经网络等专门模型,本文以图像数据为示例展示我们的主动学习技术,结果表明该技术能够显著改进现有主动学习方法。
【原 文】 Gal Y., Islam R., Ghahramani Z. (2016) Deep Bayesian Active Learning with Image Data. In: Bayesian Deep Learning workshop, NIPS
【阅后感】 本文对于那些尚不太清楚不确定性能做什么的人,是一个结合图像数据的很好案例。对于那些想提升主动学习效率的读者,也会有所帮助 ...
MCDropout 用于多任务学习
【摘 要】 理解模型的不确定性(uncertainty)是机器学习的关键。但能够理解不确定性的传统机器学习方法(如高斯过程,Gaussian Processes, GP),很难应用于如图像、视频等高维数据。深度学习(Deep Learning)能够高效处理该类数据,但其难以对不确定性建模。本文将介绍一个重新兴起的领域,称为贝叶斯深度学习 (贝叶斯深度学习),它提供了一个可以建模不确定性的深度学习框架。贝叶斯深度学习可以达到最先进的结果,同时也能理解不确定性。
【原 文】 见 Deep Learning Is Not Good Enough,We Need Bayesian Deep Learning for Safe AI
【阅后感】 本文作者是 MC Dropout 方法提出团队的成员之一,本文以博客形式发布,浅显易懂,可以作为入门级别的读物。重点掌握:(1)不确定性的来源和分类;(2)不同不确定性的建模思路;(3)在偶然不确定性方面,作者提出了数据依赖和任务依赖两种子类型,并针对任务依赖型数据不确定性进行了建模;(4)具体技术细节参考博文中提供的两篇论文。
1、 背景
...