非零范围空间对象的索引方法--XZ序曲线索引
XZ-Ordering Method
1 背景
空间数据库系统的索引结构,主体采用R树索引及其各种变体。这些方法采用树状结构,树中每个节点均对应物理存储中的一页(Page)。该方法的问题在于,当在传统关系型数据库中实现R树时,无法直接和属性数据组合在一起统一管理,必须额外地增加一个索引文件或者索引表单独实现地理空间对象的空间索引,这种方式也被称为混合索引方案。这种混合索引方案存在以下几个方面问题:
非常难以维护,因为要保持两种结构的同步更新。如果一方更新失败,都会导致另一方被迫停止。为实现这一目的,必须要实现一种面向同质数据库系统的分布式提交协议,这需要对数据库内部技术细节非常了解,实现起来也非常耗时。采取混合索引方案会带来其他问题,例如:文件系统和数据库系统采用的是完全不同的数据安全策略、备份策略和并发访问策略,维护起来非常复杂。
面向对象数据库系统(另外一种NoSQL数据库)可能是解决上述问题的一种方案,因为面向对象数据库可以扩展面向应用的数据类型。但是在对象数据库中,如果要实现多维索引结构,也需要使用数据管理系统在块层级的存储管理访问接口,而大部分数据库管理系统并不 ...
分布式空间数据库「 6 」-- 空间填充曲线的聚簇性分析
空间填充曲线的聚簇性分析
一、 概述
先说结论,作者将曲线分为连续型(Hillbert、Peano等)、近连续型、非连续型(Z序、Morton等)分开讨论。
1.1 关于矩形查询的通用结论
(1)对于固定尺寸的“矩形查询 rrr ”,存在一个平均簇值的最优解(下限)。
(2)上述最优解(下限)受限于 rrr 的体积(用r中的单元数做量化)和形状(用 rrr中各维度上的边数来量化)。
(3)通常连续性曲线较非连续型曲线更接近最优解(下限)。
(4)对于固定尺寸的“矩形查询 rrr “ ,仅考虑部分旋转集时,总是构造一种连续型曲线,使其平均簇值达到最优值(下限)。
(5)对于固定尺寸的“矩形查询 rrr”,考虑其全旋转集时,所有连续型曲线的平均簇值都是最优解。
1.2 关于连续型曲线的结论
(1)对于连续型填充曲线,通过将某个查询 ggg 在各维度上做所有可能的平移后,得出统计结论:
该情况下,查询 ggg 的平均簇值仅和 ggg 的体积(用 ggg 内的单元数做量化)、形状(用 ggg 在各维度上边的数量来量化),以及填充曲线中各维度的边占比有关(用填充曲线中各维度上 ...
基于空间填充曲线的降维方法
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...