生成任务索引帖
待完善
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
生成模型概览
〖摘要〗生成模型(Generative Model)是概率统计和机器学习中的一类重要模型,泛指一系列用于随机生成可观测数据的模型。生成模型应用十分广泛,可以用于对不同类型的数据建模,如图像、文本、声音等。如果假设上述某类型的数据对象都服从一个未知分布,则生成模型通常希望通过一些观测样本来学习(估计)该分布,并能够利用该分布随机地生成未观测过的新样本。生成模型有很多种,本文是此类模型的一个简单概览,其中大部分内容来自 Murphy 的《Machine Learning: Advanced Topics》第 20 章。
〖参考〗 J. M. Tomczak, Deep Generative Modeling. ch.1 / Murphy, 《Machine Learning: Advanced Topics》ch. 20 / Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models / An In ...