🔥 预测任务索引帖
待完善 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content:...
神经网络索引帖
#refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content: ref_content, ...
非独立同分布索引帖
#refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content: ref_content, ...
非独立同分布索引帖
#refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content: ref_content, ...
模型选择与平均索引帖
#refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content: ref_content, ...
🔥 广义线性模型索引帖
待补充 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content:...
非参数模型索引帖
【摘要】非参数模型并不是指模型没有参数,而是指模型中没有固定数量的参数,所以称之为无固定数量参数模型更为准确一些。传统的非参数模型主要包括以下三种类型:基于样本实例的模型(如 KNN 等)、基于核函数的模型(如:高斯过程、支持向量机)、基于决策树的模型(如:分类树、回归树、随机森林等),本文讲对它们进行概览。关于各种模型的细节,参加下面的相关链接。 【相关链接】 基于实例的方法: KNN 算法 距离度量方法 KDE 算法 基于核函数的方法: 高斯过程 支持向量机 基于决策树的方法: 分类树 回归树 随机森林 p{text-indent:2em;2} 1 非参数模型概述 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { ...
预测模型概览
基于该评分规则的最小化负对数损失 ( $\text{NLL}$ )方法,应该会产生良好校准的输出类概率。但在实践中,对数损失往往会过分强调概率分布的尾部。 一、问题提出绝大多数机器学习都比较关注解决一个单纯的问题:从标记训练集 $\mathcal{D} = {(\boldsymbol{x}_n, \boldsymbol{y}_n), n = 1:N}$ 中学习得到某个函数 $f$,使其能够从未来的新输入 $\boldsymbol{x}$ 中预测输出 $\boldsymbol{y}$。 其中,$\boldsymbol{x}_n \in \mathcal{X} \subseteq \mathbb{R}^D$, $\boldsymbol{y}_n \in \mathcal{Y} \subseteq \mathbb{R}^C$ 。 我们可以使用形式为 $p(\boldsymbol{y}|f(\boldsymbol{x}))$ 的条件概率模型,对给定输入时正确输出的不确定性建模。 当 $\mathcal{Y}$ 是一组离散标签时,此类模型(在 ML...
弱监督之不完全学习任务 -- 半监督学习概述
Semi-supervised Learning Semi-supervised Learning 是 半监督学习...
➃ 系统化掌握集成学习方法
系统化掌握集成学习1. 简单的集成学习方法平均法加权平均法最大投票法 2. 二次采样方法与统计机器学习基础3. Bagging 方法 – 等权重的装袋法Bootstrap Aggregation 4. Random Forest 随机森林法 –5. Boosting 方法 – 权重逐步增大的提升法6. Stacking 方法 – 学习最优的模型组合7. 应用案例同质分类器的集成学习 – 以手写数字识别为例 异质分类器的集成学习 – 以信用卡违约预测为例 异质分类器的集成学习 – 以垃圾邮件为例 异质分类器的集成学习 – 以电影评论情感分析为例 同质分类器的集成学习 – 以时尚产品分类为例 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { ...