🔥 广义线性模型索引帖
待补充
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
➆ 分层模型
p{text-indent:2em;2}
分层模型
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
...
➅ Probit 模型
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。
Probit 模型
在上一章中,我们使用输入变量的线性组合来预测输出变量的平均值。我们假设后者为高斯分布。在许多情况下都可以使用高斯分布,但对于其他许多情况,选择不同的分布可能更明智;当我们用 ttt 分布替换高斯分布时,我们已经看到了一个这样的例子。在本章中,我们将看到更多使用高斯分布以外分布的明智例子。正如我们将了解到的,存在一个通用的主题或模式,可将线性模型推广到许多问题。在本章中,我们将探讨:
广义线性模型
Logistic回归和逆链接函数
简单Logistic回归
多元Logistic回归
Softmax函数和多项Logistic回归
Poisson回归
零膨胀Poisson回归
4.1 广义线性模型
本章的核心思想之一相当简单:为了预测输出变量的平均值,我们可以对输入变量的线性 ...
➄ 广义线性模型
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。
p{text-indent:2em;2}
广义线性模型
在上一章中,我们使用输入变量的线性组合来预测输出变量的平均值。我们假设后者为高斯分布。在许多情况下都可以使用高斯分布,但对于其他许多情况,选择不同的分布可能更明智;当我们用 ttt 分布替换高斯分布时,我们已经看到了一个这样的例子。在本章中,我们将看到更多使用高斯分布以外分布的明智例子。正如我们将了解到的,存在一个通用的主题或模式,可将线性模型推广到许多问题。在本章中,我们将探讨:
广义线性模型
Logistic回归和逆链接函数
简单Logistic回归
多元Logistic回归
Softmax函数和多项Logistic回归
Poisson回归
零膨胀Poisson回归
4.1 广义线性模型
本章的核心思想之一相当简单:为了预测输出变 ...
➄ 线性回归模型:MLE、MAP和贝叶斯推断
【摘要】 MLE、MAP和贝叶斯推断
【原文】
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 MLE、MAP和贝叶斯推断
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_co ...
➃ 线性回归模型:样条回归
【摘要】 样条回归
【原文】
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 样条回归
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.inne ...
④ 线性回归模型:套索回归
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。
套索回归
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = ...
④ 线性回归模型:岭回归
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。
岭回归
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = ...
④ 线性回归模型:最小二乘线性回归
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。
样条回归
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = ...
③ 逻辑斯谛回归
其中是一个函数,我们将调用反向链接函数。有许多反向链接函数可供选择;可能最简单的是恒等函数。这是一个返回与其参数相同的值的函数。第3章“线性回归建模”中的所有模型都使用了单位函数,为简单起见,我们只是省略了它。身份功能本身可能不是很有用,但它允许我们以更统一的方式考虑几种不同的模型。
p{text-indent:2em;2}
线性回归模型
在上一章中,我们使用输入变量的线性组合来预测输出变量的平均值。我们假设后者为高斯分布。在许多情况下都可以使用高斯分布,但对于其他许多情况,选择不同的分布可能更明智;当我们用 ttt 分布替换高斯分布时,我们已经看到了一个这样的例子。在本章中,我们将看到更多使用高斯分布以外分布的明智例子。正如我们将了解到的,存在一个通用的主题或模式,可将线性模型推广到许多问题。在本章中,我们将探讨:
广义线性模型
Logistic回归和逆链接函数
简单Logistic回归
多元Logistic回归
Softmax函数和多项Logistic回归
Poisson回归
零膨胀Poisson回归
4.1 广义线性模型
本章的核心思想之一相当简单:为了预测输出变 ...