地理加权回归模型
〖摘 要〗 空间异质性是地理学第二定律的核心。从地理信息科学角度,空间异质性主要包含两种类型,一是随空间变化,空间某些变量之间的关系发生了明显变化;二是随空间变化,空间某些变量的统计量(如:均值、方差)会出现平稳或者不平稳的变化。地理加权回归是空间计量学、地理空间统计学中为研究第一种空间异质性(即变量间关系的空间异质性)而提出的工具,在多元变量的空间插值或预测等方面具有重要作用。本文为相关原理的基本介绍。 〖原 文〗 Yamagata, Y. and Seya, H. (eds) (2020) Spatial analysis using big data: methods and urban applications. London, United Kingdom ; San Diego, CA: Academic Press, an imprint of Elsevier (Spatial econometrics and spatial statistics). Chapter 6 1 引言1.1 全局空间最小二乘回归的问题在地学空间分析中,$n$...
空间变系数模型的新旧方法
【摘要】 本文比较了空间异质性建模中空间变化参数模型的一些主要方法,其中包括:(1)21 世纪前提出的传统方法,包括:空间展开模型、空间自适应滤波模型和地理加权回归模型。(2)21 世纪初以来出现的一些新方法,包括:空间平滑过渡自回归模型、空间高斯过程模型、含自回归过程的随机参数模型。(3)一些通用变参数模型方法在空间异质性建模中的应用,包括:空间样条方法等。文中采用人工合成数据,以图形方式展示了不同方法之间的差异。注意:不知为何原因,本文未提及空间滤波方法。 【原文】 D. M. Lambert, “Old and new approaches for spatially varying coefficient models,” Review of Regional Studies, vol. 51, no. 2, pp. 113–128, 2021, doi: 10.52324/001c.27969. 《空间回归模型综述》...
空间局部化思维对于统计和社会的重要性
【摘 要】 在过去的二十年里,越来越多的注意力集中在局部形式的空间分析上,无论是在描述性统计还是空间建模方面,我们称之为 “局部化思维”。局部化思维的基础在于:全局空间分析方法可能不适用,并且待测量的条件关系存在随空间变化的情况。本文不仅研究了局部化思维对空间过程建模的影响,而且更广泛地考察了人们对空间行为的理解。我们首先简要调查了局部统计建模的原因;然后描述一种局部建模框架(多尺度地理加权回归),以展示局部模型中的基本概念和此类模型的输出类型;之后,我们研究了局部方法对统计分析的影响,重点是局部模型与空间回归模型相比的作用、局部模型的诊断、局部方法如何与困扰空间分析数十年的空间尺度问题相关联等问题;最后,我们将注意力转向空间局部建模方法对社会的影响,讨论了可复制性以及如何使用空间局部模型来测量以前无法测量的基于地点的效应。文中通过一个房价影响因素的实例来证明在整篇论文中提出的问题。 【原 文】 A. S. Fotheringham and M. Sachdeva, Spatial Statistics, vol. 50, p. 100601, 2022, doi:...
空间回归模型综述
空间回归模型概述【摘要】 空间回归模型是按照空间区位研究变量之间关系的主要数学工具。根据回归模型是否存在空间同质特征(或反之空间异质性),通常可以将空间回归模型划分为 全局空间回归模型 和 局部空间回归模型。【原文】 自编【作者】 濮国梁,北京大学 1 概述p{text-indent:2em} 空间回归模型是按照空间区位研究变量之间关系的主要数学工具之一。根据空间回归模型是否同质(或反之是否异质,可以简单理解为模型参数是否会随空间位置变化而变化 ),可以将空间回归模型划分为 全局空间回归模型 和 局部空间回归模型。其中: 全局空间回归模型以空间依赖性研究为主体,主要探究的是不同变量、误差项之间的空间交互效应; 局部回归模型则相对复杂,它不仅要研究变量、误差项之间的空间交互效应,还要研究模型本身( 通常指 模型结构 和 模型参数 )的空间变化规律,探究的重点是 空间异质性。 flowchart LR A[空间回归模型]---B{变系数检验} B---|否|C01[全局空间回归] B---|是|C02[局部空间回归] ...
一种地理加权人工神经网络 -- GWANN
一种地理加权人工神经网络【摘 要】 虽然最近的发展在许多方向上扩展了地理加权回归( GWR ),但通常假设因变量和自变量之间的关系是线性的。然而,在实践中,变量往往是非线性关联的。为解决该问题,荷兰乌特勒支大学 Hagenauer 等提出了一种地理加权人工神经网络( $GWANN$ )。 $GWANN$ 将地理加权与人工神经网络相结合,能够在无假设情况下以数据驱动方式学习复杂的非线性关系。通过已知空间特征的合成数据和真实世界案例研究,作者将 $GWANN$ 和 GWR 进行了比较。合成数据的结果表明,当数据之间关系是非线性且空间方差较大时, $GWANN$ 算法的性能要好于 GWR 算法,而基于真实数据的结果表明, $GWANN$ 算法在实际应用中也可以取得更好的性能。 【原 文】 Hagenauer, J. and M. Helbich ( 2021 ). “A geographically weighted artificial neural network.” International Journal of Geographical Information...