chezmoi个人配置管理工具的使用
1 添加和取消配置项所有的修改均以本地的 chezmoi source 为中心(通常在.local/share/chezmoi 下),常用命令包括: 初始化本地源: chezmoi init 向源中添加配置项: chezmoi add 从源中取消配置项: chezmoi forget 修改本地源并更新配置项: chezmoi edit 并且 chezmoi apply 外部修改配置项后更新本地源: chezmoi re-add 在源目录下执行 git 命令: chezmoi git 进入源目录: chezmoi cd 显示源的配置: chezmoi cat-config 编辑源的配置: chezmoi edit-config 2 修改和更新配置项: 方法 1:...
Linux 中个人常用目录的中英文转换
相信大家在使用Linux的时候会遇到一个问题,如果是全英状态下,那么对英语不太好的人,使用起来可能有些难度,但是如果是中文状态下的话,Linux主目录下面的几个文件夹也会变成中文,然后在终端中时候的话,输入法需要中英文切换,可能比较麻烦,下面教大家在中文状态下把文件夹的名称换成英文。 (1)首先,打开终端,修改环境变量 export LANG=en_US ;(2)然后,输入 xdg-user-dirs-gtk-update ,这是一个修改目录的 GTK 程序;(3)在界面中此时会根据 LANG 环境变量自动设置目标目录,选择更新目录即可;(4)再将环境变量设为中文即可: export LANG=zh_CH。 最终实现:目录变成了英文,但是操作系统还是中文。
🔥 条件神经过程(CNP)
【摘 要】 深度神经网络擅长函数逼近,但通常针对每个新函数从头开始训练。而贝叶斯方法(如高斯过程)利用先验知识在测试时快速推断新的函数形状,但高斯过程的计算成本很高,而且很难设计出合适的先验。在本文中,我们提出了结合了两者优点的条件神经过程 (CNP)。条件神经过程受到高斯过程等随机过程灵活性的启发,但其结构却类似于神经网络,并可以通过梯度下降进行训练。条件神经过程在仅观测少数训练数据点后就能够做出准确预测,同时可以扩展到复杂函数和大型数据集。我们展示了该方法在一系列机器学习任务上的性能和多功能性,包括回归、分类和图像补全。 【原 文】 Garnelo, M. et al. (2018) ‘Conditional neural processes’, in J. Dy and A. Krause (eds) Proceedings of the 35th international conference on machine learning. PMLR (Proceedings of machine learning research), pp. 1704–1713....
高效的高斯神经过程回归
【摘 要】条件神经过程 (CNP)是一个有吸引力的元学习模型系列,它可以产生经过良好校准的预测,能够在测试时进行快速推断,并且可以通过简单的最大似然程序进行训练。 CNP 的局限性在于它们无法对输出中的依赖关系进行建模。这极大地影响了预测性能,并且无法抽取相干的函数样本,从而限制了 CNP 在下游应用和决策制定中的适用性。神经过程 (NPs) 试图通过使用隐变量来缓解这个问题,并靠此来建模输出的依赖性,但带来了近似推断的困难。最近的一种替代方法是 FullConvGNP,它可以对预测中的依赖性进行建模,同时仍然可以通过精确的最大似然法进行训练。不幸的是,FullConvGNP 依赖于昂贵的二维卷积,这使其仅适用于一维数据。在本文工作中,我们提出了一种新方法来模拟输出依赖性,它适用于最大似然训练,但可以扩展到二维和三维数据。所提出的模型在合成实验中表现出了良好性能。 【原 文】 Markou, S. 等 (2021) ‘Efficient Gaussian Neural Processes for Regression’. arXiv. Available at:...
latex 编译链简介
【摘 要】 在 LaTex 中,文章内容、参考文献文件、宏包文件、格式文件是相互分开的。编译过程需要将这些文件拼接起来,形成最终的 pdf 文件。此过程不是一步到位的,而是涉及到一个编译链条:将前一步编译的结果输送到下一步继续编译。 1 Latex 中的各种文件latex 中的常见文件有如下类型(指参与编译的源文件): .tex:tex 文件是最常见的 latex 文件,也是平时编写文章主要文件 .cls:cls 文件是 latex 的格式文件,规定了 tex 源文件的排版格局,称为类文件(class),一般使用 \documentclass{} 导入 .sty:sty 文件是一种宏包文件(package),一般使用 \usepackage{} 导入 .bst:bst 文件是参考文献的排版格式文件,一般使用 \bibliographystyle{} 导入 .bib:存储参考文献数据的库文件,一般使用 \bibliography{} 导入文中使用到的文献 其他文件:...
🔥 自动模型构建索引贴
一、 如何构造核二、 自动构造核《用于模式发现和外推的高斯过程核》 : 使用高斯混合模型对核的谱密度(傅里叶变换)建模,得出简单封闭形式的高斯过程核。 三、 #refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content =...
用于模式发现和外推的高斯过程核
【摘 要】 高斯过程是函数的丰富分布,它提供了贝叶斯非参数方法来进行平滑和插值。我们介绍了可与高斯过程一起使用以发现模式并启用外推的简单封闭形式核。这些核是通过使用高斯混合对谱密度(核的傅里叶变换)建模而得出的。所提出的核支持广泛类别的平稳协方差,但高斯过程推断仍然简单且具有解析性。我们通过发现模式并对合成示例以及大气 $CO_2$ 趋势和航空公司乘客数据进行远程外推来证明所提出的核。我们还表明,可以在我们的框架内重建几个流行的标准协方差。 【原 文】 Wilson, A.G. and Adams, R.P. (2013) ‘Gaussian Process Kernels for Pattern Discovery and Extrapolation’. arXiv. Available at: http://arxiv.org/abs/1302.4245 (Accessed: 21 March 2023). 1 简介机器学习从根本上讲是关于模式发现的。第一个机器学习模型,例如感知器 (Rosenblatt, 1962 [19]),是基于一个简单的神经元模型...
🔥 高斯神经过程
高斯神经过程【摘 要】 神经过程是一类丰富的元学习模型,可将数据集直接映射到预测性随机过程。我们对用于训练条件神经过程的标准最大似然目标进行了严格的分析。此外,我们向神经过程家族提出了一个新成员,称为高斯神经过程 (GNP),它结合平移等方差性对预测相关性进行建模,能够提供通用的近似保证,并展示了很好的性能。 【原 文】 Bruinsma, W.P. 等 (2021) ‘The Gaussian Neural Process’. arXiv. Available at: http://arxiv.org/abs/2101.03606 (Accessed: 23 February 2023). 1 引言神经过程 (Neural Processes, NPs; Garnelo 等,2018a [5],2018b [6]) 使用神经网络直接参数化并且学习 “从观测数据到随机过程的后验预测分布的映射” 。在本文工作中,我们为神经过程框架提供了两个贡献。 **贡献 1**: 对用于训练条件神经过程模型的标准最大似然 (ML) 目标进行严格分析。特别是,我们将目标与随机过程之间的...
🔥 自回归条件神经过程
【摘 要】 条件神经过程(CNP)是一种具有吸引力的元学习模型,它可以产生经过良好校准的预测,并且可以通过最大似然程序进行训练。尽管条件神经过程有很多优势,但 其无法在预测中建立依赖关系模型 。已经有多项工作为此提出了解决方案,但都以 近似 或 仅限于高斯 预测为代价的。在本文工作中,我们建议不对条件神经过程模型或训练过程进行任何修改,而是改变其在测试时的部署方式。我们从 神经自回归密度估计器 (NADE) 文献中汲取了灵感,使用 概率链式法则 自回归地定义联合预测分布,而不是对每个目标点进行独立的预测。实验结果表明,此过程允许 因子化的高斯条件神经过程 对相关的、非高斯的预测分布进行建模。令人惊讶的是,在使用合成数据和真实数据的广泛任务中,我们表明自回归模式下的条件神经过程,不仅显著优于非自回归条件神经过程,而且还与更复杂的模型(训练成本和难度可能高得多)形成了竞争关系。自回归条件神经过程性能出色的原因在于:不需要通过训练来模拟联合分布的依赖性。我们的工作提供了一个示例,说明了神经过程能够从 “神经分布估计的思想”...
梯度下降学得的模型都近似于一个核机
【摘 要】 深度学习的成功通常归功于其自动发现数据新表示的能力,而不是像其他学习方法那样依赖手工制作的特征。然而,我们表明,通过标准梯度下降算法学习的深度网络实际上在数学上近似等同于核机器,这是一种简单地记忆数据并通过相似函数(核)直接将其用于预测的学习方法。通过阐明它们实际上是训练示例的叠加,这极大地增强了深度网络权重的可解释性。网络架构将目标函数的知识合并到核中。这种更好的理解应该会导致更好的学习算法。 【原 文】 Domingos, Pedro. “Every Model Learned by Gradient Descent Is Approximately a Kernel Machine.” arXiv, November 30, 2020. http://arxiv.org/abs/2012.00152. 1 引言尽管取得了许多成功,但深度学习仍然知之甚少(Goodfellow 等,2016 年)。相比之下,核机器基于完善的数学理论,但它们的经验性能通常落后于深度网络(Scholkopf 和...