自动微分变分推断【ADVI】
【摘要】概率建模是迭代进行的。一位科学家假设一个简单模型,将其拟合到数据中,根据分析对其进行改进,然后重复。然而,将复杂模型拟合到大数据是其中的一个瓶颈。为新模型推导算法在数学和计算上都具有挑战性,这造成很难有效地循环执行这些步骤。为此,我们开发了自动微分变分推断 (ADVI)。使用我们的方法,科学家只提供一个概率模型和一个数据集,没有别的要求。ADVI 会自动推导出一个有效的变分推断算法,让科学家有时间提炼和探索更多模型。ADVI 不需要共轭假设,能够支持更广泛的模型。我们研究了 101010 个不同模型的 ADVI ,并将其应用于具有数百万个观测值的数据集。ADVI 已经被集成到 Stan 概率编程系统中,可以立即使用。
【原文】Alp Kucukelbir, Dustin Tran, Rajesh Ranganath et al.(2016), Automatic Differentiation Variational Inference. ICLR, 2016. arXiv:1603.00788
1 问题提出
我们开发了一种能够为复杂概率模型自动推导出变分推断算法 ...
➃ 集成学习: 提升法
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 集成学习
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
...
➃ 集成学习:Bagging
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 集成学习之 『装袋法』
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathnam ...
➂ 决策树:随机森林
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 决策树之『随机森林』
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname ...
➃ 集成学习:概况
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 集成学习之 『概况』
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname ...
➂ 决策树:回归树
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 决策树之『回归树』
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname, ...
➂ 决策树:分类树
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 决策树之『分类树』
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname, ...
➂ 决策树:概况
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 决策树之『概况』
我们从最简单最常见的一元高斯分布开始,其概率密度函数为
p(x)=1σ2πexp(−(x−μ)22σ2)(1)p(x) = \frac{1}{\sigma\sqrt{2\pi}}\exp (-\frac{(x-\mu)^2}{2\sigma^2}) \tag{1}
p(x)=σ2π1exp(−2σ2(x−μ)2)(1)
其中 μ\muμ 和 σ\sigmaσ 分别表示均值和方差,这个概率密度函数曲线画出来就是我们熟悉的钟形曲线,均值和方差唯一地决定了曲线的形状。
2 多元高斯分布
从一元高斯分布推广到多元高斯分布,假设各维度之 ...
➁ 核方法:高斯过程
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》;《深度神经网络作为高斯过程》;《深度高斯过程的重要性加权变分推断》
p{text-indent:2em;2}
1 一元高斯分布
我们从最简单最常见的一元高斯分布开始,其概率密度函数为
p(x)=1σ2πexp(−(x−μ)22σ2)(1)p(x) = \frac{1}{\sigma\sqrt{2\pi}}\exp (-\frac{(x-\mu)^2}{2\sigma^2}) \tag{1}
p(x)=σ2π1exp(−2σ2(x−μ)2)(1)
其中 μ\muμ 和 σ\sigmaσ 分别表示均值和方差,这个概率密度函数曲线画出来就是我们熟悉的钟形曲线,均值和方差唯一地决定了曲线的形状。
...
蒙特卡洛采样的加速方法
〖摘要〗马尔可夫链蒙特卡罗算法通过对分布的局部性探索来模拟复杂的统计分布。这种局部特征虽然不要求使用者了解目标分布性质,但也同时会导致对目标分布更长时间的探索,并且随着问题维度和数据复杂性的增加,对模拟样本数量的要求会也会增加。有几种技术可用于加速蒙特卡罗算法的收敛,无论是在探索层面(如回火、哈密顿蒙特卡罗和部分确定性方法)还是在开发层面(使用 Rao-Blackwellisation 和可扩展方法)。本文是对这些方法进行的一个综述。
〖原文〗 Robert, C.P. et al. (2018) ‘Accelerating MCMC algorithms’, Wiley Interdisciplinary Reviews: Computational Statistics, 10(5), p. e1435. Available at: https://doi.org/10.1002/wics.1435.
1 概述
马尔可夫链蒙特卡罗(MCMC)算法已经使用了近 60 年,在 1990 年代初成为分析贝叶斯复杂模型的参考方法(Gelfand 和 Smith,1990 [41 ...