序贯蒙特卡洛与粒子滤波
〖摘要〗设计一个高效的迭代式模拟采样算法可能很困难,但对其进行推断并且监控其收敛性相对容易。本文首先给出了我们推荐的推断策略(遵循 Gelman et al., 2003 的第 11.10 节),并解释了推荐原因;然后用我们最近研究的一个关于 “民意调查数据分层模型拟合” 的案例进行说明。
〖原文〗 Inference from Simulations and Monitoring Convergence, Handbook of Markov Chain Monte Carlo, 2011
1 背景
现实世界的数据分析通常需要在仅给出对某些相关可观测量的序列观测的情况下估计未知量。在贝叶斯框架中,人们通常掌握模型的一些先验知识:不可观测兴趣量的先验分布和似然函数(将可观测量与不可观测量关联)。不可观测值的后验分布可以使用贝叶斯定理计算,这允许人们对未观测到的量进行推断。
在某些情况下,按顺序处理观测结果是很自然的。这些案例是本文重点,例如,不断有新数据实时输入的雷达跟踪或金融估算工具等在线应用,尝试更新之前形成的后验分布,肯定比从头开始重新计算更容易。
如果上述观测数据可 ...
➁ 核方法:概述
【摘要】核方法
【原文】
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 核方法
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerTe ...
➀ 基于实例的方法: 距离度量学习
【摘要】 “距离度量” 或者说 “相似度度量” 是基于实例方法和很多其他方法进行最优化选择的基础。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 距离度量学习
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num; ...
➀ 基于实例的方法: 核密度估计( KDE )
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 KDE 模型
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'') ...
➀ 基于实例的方法:KNN 模型
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 KNN 模型
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'') ...
哈密顿蒙特卡洛(HMC)方法
哈密顿蒙特卡洛( HMC )采样方法
〖摘要〗快速给出下一个状态的提议值是 MCMC 方法的关键环节。对于状态有限的离散概率质量函数而言,可以采用随机游走的方式选择下一个状态的提议值,然后使用 Metropolis 更新步骤;但对于连续的概率密度函数而言, 随机游走方式显然不利于快速遍历状态空间。哈密顿蒙特卡洛方法利用 Hamilton 动力学的可逆性、能量守恒、体积保持等特性,为构造马氏链提供了一种快速生成提议状态的方法,该方法与 MCMC 中的 Metropolis 更新(或其他更新方法)步骤结合,可以快速生成给定概率分布的样本。
〖原文〗 Radford M. Neal (2011), MCMC Using Hamiltonian Dynamics, Handbook of Markov Chain Monte Carlo.
1 概述
马尔可夫链蒙特卡罗 (MCMC) 起源于 Metropolis 等人 的经典论文 (1953)。它被用于模拟理想化状态下分子系统的状态分布。不久之后,引入了另一种分子模拟方法( Alder 和 Wainwright,1959 年),其 ...
能量模型概览
【摘要】
【原文】 Murphy, Kevin P. Chapter 24 of Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. probml.ai.
【参考】
https://github.com/yataobian/awesome-ebm
1 概述
变分自编码器、自回归模型和归一化流等深度生成模型,都可以用有向图模型来表述,在这些模型中,使用局部归一化的分布一步一步生成数据。但在某些情况下,根据有效样本必须满足的一组约束来指定分布,可能比定义数据生成过程更容易。这可以使用无向图形模型来完成。
基于能量的模型( Eneragy-based Models, EBM )可以被写成 Gibbs 分布,如下所示:
pθ(x)=exp(−Eθ(x))Zθp_{\boldsymbol{\theta}}(\mathbf{x}) = \frac{\exp(- \mathcal{E}_{\boldsymbol{\theta}}(\mathbf{x}))}{Z_{\boldsymbol{\theta}} ...
归一化流概览
【摘要】 归一化流是一种用于定义可表示性概率分布的通用机制,它只需要指定一个基分布和一系列双射变换,就能够得到更具有表达能力的概率分布。近年来,从提高表达能力到扩展其应用方案法,出现了大量关于归一化流的工作。我们认为该领域现在已经成熟了,需要一个公共的统一视角。本文试图通过概率建模和推断视角来描述流。本文特别强调流设计的基本原则,并将讨论模型表达能力与计算代价权衡等基本主题。本文还通过将流与更一般的概率转换相关联,来拓宽流的概念框架。最后,总结了流在生成模型、近似推断和监督学习等任务中的应用。
【原文】Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing Flows for Probabilistic Modeling and Inference (593 citation(s); arXiv:1912.02762). arXiv. http://arxiv.org/abs/1912.02762
【参考】
I. ...
隐狄利克雷分配模型
【摘 要】
自回归模型概览
【摘要】
【原文】 Murphy, Kevin P. Chapter 22 of Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. probml.ai.
【参考】
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mi\boldsymbol{x}_{t}ure Likelihood and Other Modifications
https://github.com/openai/pixel-cnn
1 概述
根据概率链式法则,我们可以写出 T 个变量上的任意联合分布如下:
p(x1:T)=p(x1)p(x2∣x1)p(x3∣x2,x1)p(x4∣x3,x2,x1)…=∏t=1Tp(xt∣x1:t−1)p\left(\boldsymbol{x}_{1: T}\right)=p\left(\boldsymbol{x}_1\right) p\left(\boldsymbol{x}_2 \mid \boldsymbo ...