概率图学习索引帖
#refplus, #refplus li{ padding:0; margin:0; list-style:none; }; document.querySelectorAll(".refplus-num").forEach((ref) => { let refid = ref.firstChild.href.replace(location.origin+location.pathname,''); let refel = document.querySelector(refid); let refnum = refel.dataset.num; let ref_content = refel.innerText.replace(`[${refnum}]`,''); tippy(ref, { content: ref_content, ...
🔥 组合似然法概述
【摘 要】组合似然法是用于超大规模高斯随机场高效计算的主要方法之一,本文提供了对组合似然理论和应用的最新发展调查。论文考虑了一系列应用领域,包括地统计学、空间极值、时空模型、集群和纵向数据以及时间序列等。考虑到 Larribe 和 Fearnhead (2011) 已经发表了在统计遗传学方面的综述论文,本文省略了这一重要应用领域。本文重点介绍了组合似然理论发展、组合似然推断的效率和鲁棒性等知识现状。 【原 文】 Varin, C., Reid, N. and Firth, D. (2011) ‘AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS’, Statistica Sinica, 21(1), pp. 5–42. 1...
基于空间滤波的大型数据集空间变系数建模
〖摘 要〗 虽然空间变系数 (SVC) 建模在应用科学中很流行,但其计算负担很大。如果考虑空间变系数的多尺度属性,则尤其如此。鉴于此背景,本研究开发了一种基于 Moran 特征向量的空间变系数 (M-SVC) 建模方法,可有效地估计多尺度空间变系数模型。该估计通过 (1) 秩降低、(2) 预压缩和 (3) 顺序似然最大化来加速。步骤 (1) 和 (2) 从似然函数中消除样本大小 N;在这些步骤之后,似然最大化成本与 N 无关。步骤 (3) 进一步加速似然最大化,因此即使空间变系数的数量 K 很大,也可以估计多尺度空间变系数模型。通过蒙特卡罗模拟实验将 M-SVC 方法与地理加权回归 (GWR) 进行比较。这些模拟结果表明,当 N 很大时,本文方法比地理加权回归快得多,尽管数值估计了 2K 个参数,而地理加权回归仅数值估计了 1 个参数。然后,将所提出的方法应用于土地价格分析作为说明。开发的空间变系数估计方法在 R 包 “spmoran” 中实现 〖原 文〗 Murakami, D. and Griffith, D.A. (2019) ‘Spatially varying...
艺术、地理信息和数学之间存在惊人的接口
【摘 要】 地理与艺术或数学与艺术之间是否存在任何已知的协同作用,将所有这三个学科联系起来?地理人文和数学人文文献只描述了这两个单独的协同作用。一种新的定量地理学方法利用复杂的数学概念来分析遥感卫星图像,当扩展到艺术绘画时,它确实跨越了所有三个学科。组织概念是空间自相关,或者不相似/相似的颜色及其强度在绘画中聚集的趋势。本文总结了这一论点的论证,并具体应用于达芬奇、莫奈和伦勃朗的画作。它的主要贡献是,对于绘画的高地理分辨率数字版本,通过明智选择和组合的空间自相关分量构建的复制品与其原始来源的数字副本非常接近,进一步概括了文献中报道的某些近期发现。 【原 文】 Griffith, D.A. (2022) ‘Art, Geography/GIScience, and mathematics: A surprising interface’, Annals of the American Association of Geographers, 0(0), pp. 1–12. Available at:...
大型数据集的空间统计竞赛
〖摘 要〗 随着空间数据集变得越来越大和笨重,对空间模型的精确推断在计算上变得令人望而却步。已经提出了各种近似方法来减少计算负担。尽管存在对这些近似方法的综合评论,但对于一些选定的方法,它们的性能比较仅限于中小型数据集。为了实现包含尽可能多的方法的全面比较,我们组织了大型数据集空间统计竞赛。本次竞赛具有以下创新特点:1)我们使用 ExaGeoStat 软件生成合成数据集,生成的实现数在 10 万到 100 万之间; 2)我们系统地设计了数据生成模型来表示具有广泛统计特性的空间过程,适用于高斯和非高斯情况; 3) 竞赛任务包括估计和预测,并通过多个标准评估结果; 4)我们公开了所有数据集和竞赛结果,以作为其他近似方法的基准。在本文中,我们公开了所有比赛细节和结果以及对比赛结果的一些分析。 〖原 文〗 Huang, H. et al. (2021) ‘Competition on Spatial Statistics for Large Datasets’, Journal of Agricultural, Biological and Environmental...
🔥 大规模空间表面时间序列建模
【摘 要】 在许多现象中观测到的数据都具有空间和时间成分。由于复杂高性能技术的快速发展,现在可以大规模收集时空数据。然而,大型时空数据集的统计建模涉及几个具有挑战性的问题。例如,处理大型数据集和时空非平稳性在计算上具有挑战性。因此,有必要开发新的统计模型。在这里,我们提出了一种新方法来模拟复杂的大型时空数据集。在我们的方法中,在每个时间点估计一个连续的表面,用于捕获空间依赖性(可能是非平稳的)。以这种方式,时空数据产生一系列表面。然后,使用函数型时间序列技术对此表面序列进行建模。函数型时间序列方法使我们能够获得计算上可行的方法,并且还在时间预测方面提供了广泛的灵活性。我们通过蒙特卡罗模拟研究来说明这些优势。我们还使用超过 400 万个值的高分辨率风速模拟数据集测试了方法的性能。总的来说,本方法使用了一种新的数据分析范式,其中随机场被视为一个单一的实体,这在大数据的背景下是一种非常有价值的方法。 【原 文】 I. Martínez-Hernández and M. G. Genton, “Surface time series models for large...
采用 “空间变化过程建模” 还是 “非线性建模” ?
【摘要】 在各种类型的局部统计模型的校准中获得的空间变化参数估计的研究是司空见惯的。这种估计的变化通常用空间变化过程来解释。本文强调,在将这种变化与空间变化过程相关联之前,应先检查非线性方面的空间变化参数估计的另一种解释。这可以通过描述和演示的简单筛选程序来实现,并且可以轻松应用于任何局部模型的结果。突出显示问题并展示解决方案,使用一组模拟数据,然后使用真实世界的数据集。该论文还强调了相反的情况,即当实际关系是线性但空间变化时,GAM 的不当应用会产生虚假的非线性结果。 【原 文】 M. Sachdeva, A. S. Fotheringham, Z. Li, and H. Yu, “Are We Modelling Spatially Varying Processes or Non‐linear Relationships?,” Geographical Analysis, vol. 54, no. 4, pp. 715–738, Oct. 2022, doi: 10.1111/gean.12297. 1...
spBayes--贝叶斯空间变系数模型的 R 软件包
【摘 要】 本文描述并说明了在 spBayes(版本 0.4-2)R 包中拟合空间变系数模型的新功能。新的 spSVC 函数使用计算效率高的马尔可夫链蒙特卡罗算法,并扩展了当前仅适用于空间变化截距回归模型的 spBayes 函数,以适用于回归设计矩阵中任何一组列的独立或多元高斯过程随机效应。讨论和说明了新添加的用于 spSVC 的 OpenMP 并行化选项,以及用于联合和逐点预测和模型拟合诊断的辅助函数。使用中欧的 PM10 分析说明了所提出模型的效用。 【原 文】 A. O. Finley and S. Banerjee, “Bayesian spatially Varying coefficient models in the spBayes R package,” Environmental Modelling & Software, vol. 125, p. 104608, 2020, doi: 10.1016/j.envsoft.2019.104608. 1 简介在本文中,我们描述并说明了 spBayes(Finley、Banerjee 和...
基于空间滤波方法的机器学习模型
【摘 要】 空间统计模型对于地理空间数据建模非常有效,因为它们考虑了地理空间和其他非空间协变量的空间信息,使它们能够通过解决空间依赖性来最小化空间自相关。相比之下,机器学习模型在预测非空间数据方面非常有效,但由于空间自相关问题,它们在建模和预测地理空间数据方面效果不佳。在用于地理空间数据建模的机器学习模型中,经常出现的局限性之一是没有将地理空间的空间信息融合到模型中的标准方法,因此机器学习模型中无法最小化空间自相关。 在本研究中,我们提出了一种局部空间信息嵌入的机器学习方法,该方法能够在预测地理空间现象的同时,通过解决空间依赖性来最小化空间自相关。 我们的研究应用 特征向量空间滤波方法 从空间坐标中提取近似特征向量,并将它们作为一组向量与选定的非空间协变量一起嵌入到机器学习模型中。我们比较了传统空间统计模型和基于机器学习的模型之间的相对预测性能。实验表明,在机器学习模型规范中结合空间过滤的特征向量来表示空间信息可显著提高预测性能。 【原 文】 M. D. Islam, B. Li, C. Lee, and X. Wang, “Incorporating spatial...
空间异质性类型及检验方法
【摘 要】 本文关注的重点是空间异质性问题。空间异质性是统计学中使用的一个术语,表示一个或多个感兴趣的统计特征在总体的所有子集中不相同。空间异质性的存在与独立同分布假设相冲突,即观测值之间并不是同分布的,这使很多基于独立同分布假设的方法出现问题。如果我们的研究区域很大并且物理或社会经济多样化,或者研究区域在高空间分辨率下被观测到,那么作出数据子集都具有相同统计特征的假设大概率是无效的,因此这个问题值得重视。本文概述了三种基本的空间异质性:空间均值异质性、空间自相关结构(含异方差)异质性、空间分层异质性,其中前两者相对比较成熟,文中给除了相关连接;因此本文重点是空间分层异质性的定义、检验和建模。 【参 考】 J. Wang, R. Haining, T. Zhang, C. Xu, and M. Hu, “Statistics for spatially stratified heterogeneous data,” arXiv preprint arXiv:2211.16918, 2022. R. P. Haining and G. Li, Modelling...