模型比较(Model Comparison)
文章作者: 西山晴雪
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来源 西山晴雪的知识笔记!
相关推荐
2022-12-12
🔥 大规模空间表面时间序列建模
【摘 要】 在许多现象中观测到的数据都具有空间和时间成分。由于复杂高性能技术的快速发展,现在可以大规模收集时空数据。然而,大型时空数据集的统计建模涉及几个具有挑战性的问题。例如,处理大型数据集和时空非平稳性在计算上具有挑战性。因此,有必要开发新的统计模型。在这里,我们提出了一种新方法来模拟复杂的大型时空数据集。在我们的方法中,在每个时间点估计一个连续的表面,用于捕获空间依赖性(可能是非平稳的)。以这种方式,时空数据产生一系列表面。然后,使用函数型时间序列技术对此表面序列进行建模。函数型时间序列方法使我们能够获得计算上可行的方法,并且还在时间预测方面提供了广泛的灵活性。我们通过蒙特卡罗模拟研究来说明这些优势。我们还使用超过 400 万个值的高分辨率风速模拟数据集测试了方法的性能。总的来说,本方法使用了一种新的数据分析范式,其中随机场被视为一个单一的实体,这在大数据的背景下是一种非常有价值的方法。 【原 文】 I. Martínez-Hernández and M. G. Genton, “Surface time series models for large...
2021-03-22
GeoAI 的近期研究总结与思考
【摘 要】本文摘自武汉大学学报,作者在文章中列举了大量GeoAI领域的文献参考,值得收藏。尤其是梳理和总结了当前5个主要研究热点方向,并列出了最近急迫需要解决的3个方面挑战。 【原 文】高松,地理空间人工智能的近期研究总结与思考,武汉大学学报,DOI:10.13203/j.whugis20200597 1 GeoAI...
2022-03-15
🔥 空间表征学习综述文章
【摘要】无监督文本编码模型最近推动了自然语言处理的实质性进展。其关键思想是使用神经网络将文本中的词转换为基于单词位置及其上下文的向量空间表示( 词嵌入 ),进而用于下游任务的端到端训练。我们在空间分析中看到了惊人的相似情况,即空间分析侧重于将地理对象( 如:POI点 )的绝对位置和空间上下文纳入模型。一个通用的空间表征模型对于许多任务都是有价值的。然而,迄今为止,除了简单地将离散化或前馈网络应用于坐标之外,还没有这样通用的模型存在,并且很少有努力对具有非常不同特征的分布进行联合建模,而这些特征经常出现在地理信系统数据中。神经科学领域诺贝尔奖得主的研究表明,哺乳动物的网格细胞(Grid Cell)提供了一种多尺度、周期性的位置编码表示,对于动物识别位置和寻找路径至关重要。因此,我们提出了一个称为 Space2Vec 的空间表征学习模型来编码地点(Place)的绝对位置和空间关系。我们对两个不同任务在两个真实世界的地理数据上进行实验:1)在给定位置和上下文的情况下预测 POI...
2022-12-07
空间异质性类型及检验方法
【摘 要】 本文关注的重点是空间异质性问题。空间异质性是统计学中使用的一个术语,表示一个或多个感兴趣的统计特征在总体的所有子集中不相同。空间异质性的存在与独立同分布假设相冲突,即观测值之间并不是同分布的,这使很多基于独立同分布假设的方法出现问题。如果我们的研究区域很大并且物理或社会经济多样化,或者研究区域在高空间分辨率下被观测到,那么作出数据子集都具有相同统计特征的假设大概率是无效的,因此这个问题值得重视。本文概述了三种基本的空间异质性:空间均值异质性、空间自相关结构(含异方差)异质性、空间分层异质性,其中前两者相对比较成熟,文中给除了相关连接;因此本文重点是空间分层异质性的定义、检验和建模。 【参 考】 J. Wang, R. Haining, T. Zhang, C. Xu, and M. Hu, “Statistics for spatially stratified heterogeneous data,” arXiv preprint arXiv:2211.16918, 2022. R. P. Haining and G. Li, Modelling...
2023-01-11
🔥 空间变系数模型索引帖
1 综述类自行整理的 《空间回归模型综述》: 空间回归模型是按照空间区位研究变量之间关系的主要数学工具。根据回归模型是否存在局部空间同质特征(或反之空间异质性),通常可以将空间回归模型划分为 全局空间回归模型 和 局部空间回归模型。 Fotheringham 2022 年的 《空间局部化思维对于统计和社会科学的重要性》: 在过去的二十年里,越来越多的注意力集中在局部形式的空间分析上,无论是在描述性统计还是空间建模方面,我们称之为...
2022-05-26
空间回归模型综述
空间回归模型概述【摘要】 空间回归模型是按照空间区位研究变量之间关系的主要数学工具。根据回归模型是否存在空间同质特征(或反之空间异质性),通常可以将空间回归模型划分为 全局空间回归模型 和 局部空间回归模型。【原文】 自编【作者】 濮国梁,北京大学 1 概述p{text-indent:2em} 空间回归模型是按照空间区位研究变量之间关系的主要数学工具之一。根据空间回归模型是否同质(或反之是否异质,可以简单理解为模型参数是否会随空间位置变化而变化 ),可以将空间回归模型划分为 全局空间回归模型 和 局部空间回归模型。其中: 全局空间回归模型以空间依赖性研究为主体,主要探究的是不同变量、误差项之间的空间交互效应; 局部回归模型则相对复杂,它不仅要研究变量、误差项之间的空间交互效应,还要研究模型本身( 通常指 模型结构 和 模型参数 )的空间变化规律,探究的重点是 空间异质性。 flowchart LR A[空间回归模型]---B{变系数检验} B---|否|C01[全局空间回归] B---|是|C02[局部空间回归] ...