【原 文】 Lindgren, F., Rue, H. and Lindström, J. (2011) ‘An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach’, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), pp. 423–498. Available at: https://doi.org/10.1111/j.1467-9868.2011.00777.x.
[1] Adler, R. J. (2009). The Geometry of Random Fields. In Applied Mathematics, Volume 62 of Classics in applied mathematics. Society for Industrial & Applied Mathematics.
[2] Adler, R. J. and J. Taylor (2007). Random Fields and Geometry. Springer Monographs in Mathematics. Springer.
[3] Allcroft, D. J. and C. A. Glasbey (2003). A latent Gaussian Markov random field model for spatiotemporal rainfall disaggregation. Journal of the Royal Statistical Society, Series C 52, 487–498.
[4] Arjas, E. and D. Gasbarra (1996). Bayesian inference of survival probabilities, under stochastic ordering constraints. Journal of the American Statistical Association 91(435), 1101–1109.
[5] Auslander, L. and R. E. MacKenzie (1977). Introduction to Differentiable Manifolds. New York: Dover Publications, Inc.
[6] Banerjee, S., B. P. Carlin, and A. E. Gelfand (2004). Hierarchical Modeling and Analysis for Spatial Data, Volume 101 of Monographs on Statistics and Applied Probability. London: Chapman & Hall.
[7] Banerjee, S., A. E. Gelfand, A. O. Finley, and H. Sang (2008). Gaussian predictive process models for large spatial datasets. Journal of the Royal Statistical Society, Series B 70(4), 825–848.
[8] Bansal, R., L. H. Staib, D. Xu, H. Zhu, and B. S. Peterson (2007). Statistical analyses of brain surfaces using Gaussian random fields on 2-D manifolds. IEEE Transaction on Medical Imaging 26(1), 46–57.
[9] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society, Series B 36(2), 192–225.
[10] Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician 24(3), 179–195.
[11] Besag, J. (1981). On a system of two-dimensional recurrence equations. Journal of the Royal Statistical Society, Series B 43(3), 302–309.
[12] Besag, J. and C. Kooperberg (1995). On conditional and intrinsic autoregressions. Biometrika 82(4), 733–746.
[13] Besag, J. and D. Mondal (2005). First-order intrinsic autoregressions and the de Wijs process. Biometrika 92(4), 909–920.
[14] Besag, J., J. York, and A. Mollie (1991). Bayesian image restoration with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics 43(1), 1–59.
[15] Bolin, D. and F. Lindgren (2009). Wavelet Markov models as efficient alternatives to tapering and convolution fields. Preprints in Mathematical Sciences, Lund University (2009:13), submitted.
[16] Bolin, D. and F. Lindgren (2011). Spatial models generated by nested stochastic partial differential equations. Annals of Applied Statistics, to appear.
[17] Brenner, S. C. and R. Scott (2007). The Mathematical Theory of Finite Element Methods (3rd ed.). Springer.
[18] Brohan, P., J. Kennedy, I. Harris, S. Tett, and P. Jones (2006). Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. Journal of Geophysical Research 111.
[19] Chen, C. M. and V. Thom ́ ee (1985). The lumped mass finite element method for a parabolic problem. Journal of the Australian Mathematical Society, Series B 26, 329–354.
[20] Chiles, J. P. and P. Delfiner (1999). Geostatistics: Modeling Spatial Uncertainty. Wiley Series in Probability and Statistics. Chichester: John Wiley & Sons, Ltd.
[21] Ciarlet, P. G. (1978). The finite element method for elliptic problems. North-Holland Pub. Co.
[22] Cressie, N. A. C. (1993). Statistics for spatial data. Wiley
[23] Cressie, N. and Huang, H. C. (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J. Am. Statist. Ass., 94, 1330–1340.
[24] Cressie, N. A. C. and G. Johannesson (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society, Series B 70(1), 209–226.
[25] Cressie, N. and Verzelen, N. (2008) Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields. Computnl Statist. Data Anal., 52, 2794–2807.
[26] Dahlhaus, R. and H. R. Kunsch (1987). Edge effects and efficient parameter estimation for stationary random fields. Biometrika 74(4), 877–882.
[27] Das, B. (2000) Global covariance modeling: a deformation approach to anisotropy. PhD Thesis. Department of Statistics, University of Washington, Seattle.
[28] Davis, T. A. (2006) Direct Methods for Sparse Linear Systems. Philadelphia: Society for Industrial and Applied Mathematics.
[29] Diggle, P. J. and Ribeiro, P. J. (2006) Model-based Geostatistics. New York: Springer.
[30] Duff, I. S., Erisman, A. M. and Reid, J. K. (1989) Direct Methods for Sparse Matrices, 2nd edn. New York: Clarendon.
[31] Edelsbrunner, H. (2001) Geometry and Topology for Mesh Generation. Cambridge: Cambridge University Press.
[32] Eidsvik, J., Finley, A. O., Banerjee, S. and Rue, H. (2010) Approximate bayesian inference for large spatial datasets using predictive process models. Technical Report 9. Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim.
[33] Federer, H. (1951) Hausdorff measure and Lebesgue area. Proc. Natn. Acad. Sci. USA, 37, 90–94.
[34] Federer, H. (1978) Colloquium lectures on geometric measure theory. Bull. Am. Math. Soc., 84, 291–338.
[35] Fuentes, M. (2001) High frequency kriging for nonstationary environmental processes. Environmetrics, 12, 469–483.
[36] Fuentes, M. (2008) Approximate likelihood for large irregular spaced spatial data. J. Am. Statist. Ass., 102, 321–331.
[37] Furrer, R., Genton, M. G. and Nychka, D. (2006) Covariance tapering for interpolation of large spatial datasets. J. Computnl Graph. Statist., 15, 502–523.
[38] George, A. and Liu, J. W. H. (1981) Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs: Prentice Hall.
[39] Gneiting, T. (1998) Simple tests for the validity of correlation function models on the circle. Statist. Probab. Lett., 39, 119–122.
[40] Gneiting, T. (2002) Nonseparable, stationary covariance functions for space-time data. J. Am. Statist. Ass., 97, 590–600.
[41] Gneiting, T., Kleiber, W. and Schlather, M. (2010) Matérn cross-covariance functions for multivariate random fields. J. Am. Statist. Ass., 105, 1167–1177.
[42] Gschlößl, S. and Czado, C. (2007) Modelling count data with overdispersion and spatial effects. Statist. Pap., 49, 531–552.
[43] Guttorp, P. and Gneiting, T. (2006) Studies in the history of probability and statistics XLIX: on the Matérn correlation family. Biometrika, 93, 989–995.
[44] Guyon, X. (1982) Parameter estimation for a stationary process on a d-dimensional lattice. Biometrika, 69, 95–105.
[45] Hansen, J., R. Ruedy, J. Glascoe, and M. Sato (1999). GISS analysis of surface temperature change. Journal of Geophysical Research 104, 30997–31022.
[46] Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl (2001). A closer look at United States and global surface temperature change. Journal of Geophysical Research 106, 23947–23963.
[47] Hartman, L. and O. Hossjer (2008). Fast kriging of large data sets with Gaussian Markov random fields. Computational Statistics & Data Analysis 52(5), 2331–2349.
[48] Heine, V. (1955). Models for two-dimensional stationary stochastic processes. Biometrika 42(1), 170178.
[49] Henderson, R., S. Shimakura, and D. Gorst (2002). Modeling spatial variation in leukemia survival data. Journal of the American Statistical Association 97(460), 965–972.
[50] Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environmental and Ecological Statistics 5(2), 173–190.
[51] Higdon, D., J. Swall, and J. Kern (1999). Non-stationary spatial modeling. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics, 6, pp. 761–768. New York: Oxford University Press.
[52] Hjelle, Ø. and M. Dæhlen (2006). Triangulations and Applications. Springer.
[53] Hrafnkelsson, B. and N. A. C. Cressie (2003). Hierarchical modeling of count data with application to nuclear fall-out. Environmental and Ecological Statistics 10, 179–200.
[54] Hughes-Oliver, J. M., G. Gonzalez-Farias, J. C. Lu, and D. Chen (1998). Parametric nonstationary correlation models. Statistics and Probability Letters 40(15), 267–278.
[55] Ilic, M., I. W. Turner, and V. Anh (2008). A numerical solution using an adaptively preconditioned Lanczos method for a class of linear systems related with the fractional Poisson equation. Journal of Applied Mathematics and Stochastic Analysis 2008(Article ID 104525).
[56] Jones, R. H. (1963). Stochastic processes on a sphere. Annals of Mathematical Statistics 34(1), 213–218.
[57] Jun, M. and M. L. Stein (2008). Nonstationary covariancs models for global data. The Annals of Applied Statistics 2(4), 1271–1289.
[58] Karypis, G. and V. Kumar (1999). A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Scientific Computing 20(1), 359–392.
[59] Kneib, T. and L. Fahrmeir (2007). A mixed model approach for geoadditive hazard regression. Scandinavian Journal of Statistics 34(1), 207–228.
[60] Krantz, S. G. and H. R. Parks (2008). Geometric Integration Theory. Birkhauser.
[61] Lindgren, F. and H. Rue (2008). A note on the second order random walk model for irregular locations. Scandinavian Journal of Statistics 35(4), 691–700.
[62] McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. London: Chapman and Hall.
[63] Paciorek, C. and M. Schervish (2006). Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17, 483–506.
[64] Peterson, T. and R. Vose (1997). An overview of the Global Historical Climatology Network temperature database. Bulletin of the American Meteorological Society 78(12), 2837–2849.
[65] Pettitt, A. N., I. S. Weir, and A. G. Hart (2002). A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data. Statistics and Computing 12(4), 353–367.
[66] Quarteroni, A. M. and A. Valli (2008). Numerical Approximation of Partial Differential Equations (2nd ed.). Springer.
[67] Rozanov, A. (1982). Markov Random Fields. New York: Springer Verlag.
[68] Rue, H. (2001). Fast sampling of Gaussian Markov random fields. Journal of the Royal Statistical Society, Series B 63(2), 325–338.
[69] Rue, H. and L. Held (2005). Gaussian Markov Random Fields: Theory and Applications, Volume 104 of Monographs on Statistics and Applied Probability. London: Chapman & Hall.
[70] Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B 71(2), 319–392.
[71] Rue, H. and H. Tjelmeland (2002). Fitting Gaussian Markov random fields to Gaussian fields. Scandinavian Journal of Statistics 29(1), 31–50.
[72] Samko, S. G., A. A. Kilbas, and O. I. Maricev (1992). Fractional integrals and derivatives: theory and applications. Yverdon: Gordon and Breach Science Publishers.
[73] Sampson, P. D. and P. Guttorp (1992). Nonparametric estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association 87(417), 108–119.
[74] Smith, T. (1934). Change of variables in Laplace’s and other second-order differential equations. Proceedings of the Physical Society 46(3), 344–349.
[75] Song, H., M. Fuentes, and S. Gosh (2008). A compariative study of Gaussian geostatistical models and Gaussian Markov random field models. Journal of Multivariate Analysis 99, 1681–1697.
[76] Stein, M. (2005). Space-time covariance functions. Journal of the American Statistical Association 100, 310–321.
[77] Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer-Verlag.
[78] Stein, M. L., Z. Chi, and L. J. Welty (2004). Approximating likelihoods for large spatial data sets. Journal of the Royal Statistical Society, Series B 66(2), 275–296.
[79] Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical Society, Series B 50, 297–312.
[80] Wahba, G. (1981). Spline interpolation and smoothing on the sphere. SIAM Journal of Scientific and Statistical Computing 2(1), 5–16.
[81] Wall, M. M. (2004). A close look at the spatial structure implied by the CAR and SAR models. Journal of Statistical Planning and Inference 121(2), 311–324.
[82] Weir, I. S. and A. N. Pettitt (2000). Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data. Journal of the Royal Statistical Society, Series C 49(4), 473–484.
[83] Whittle, P. (1954). On stationary processes in the plane. Biometrika 41(3/4), 434–449.
[84] Whittle, P. (1963). Stochastic processes in several dimensions. Bull. Inst. Internat. Statist. 40, 974–994.
[85] Yue, Y. and P. Speckman (2010). Nonstationary spatial Gaussian Markov random fields. Journal of Computational and Graphical Statistics 19(1), 96–116.