信息抽取技术进展【4】 -- 新的挑战
信息抽取技术进展【4】-- 新的挑战
【摘要 】行业知识图谱是行业认知智能化应用的基石。目前在大部分细分垂直领域中,行业知识图谱的schema构建依赖领域专家的重度参与,该模式人力投入成本高,建设周期长,同时在缺乏大规模有监督数据的情形下的信息抽取效果欠佳,这限制了行业知识图谱的落地且降低了图谱的接受度。本文对与上述schema构建和低资源抽取困难相关的最新技术进展进行了整理和分析,其中包含我们在半自动schema构建方面的实践,同时给出了Document AI和长结构化语言模型在文档级信息抽取上的前沿技术分析和讨论,期望能给同行的研究工作带来一定的启发和帮助。
【引自】万字综述:行业知识图谱构建最新进展
作者:李晶阳[1],牛广林[2],唐呈光[1],余海洋[1],李杨[1],付彬[1],孙健[1]
单位:阿里巴巴-达摩院-小蜜Conversational AI团队[1],北京航空航天大学计算机学院[2]
新的挑战
1 文档级信息抽取难题
在实际项目中,除了从句子和段落中进行实体和关系抽取之外,我们还面临从文档中进行信息抽取的新挑战。下面两图是保险合同相关的pdf文档 ...
信息抽取技术进展【3】 -- 关系抽取技术
信息抽取技术进展【3】-- 关系抽取技术
【摘要 】行业知识图谱是行业认知智能化应用的基石。目前在大部分细分垂直领域中,行业知识图谱的schema构建依赖领域专家的重度参与,该模式人力投入成本高,建设周期长,同时在缺乏大规模有监督数据的情形下的信息抽取效果欠佳,这限制了行业知识图谱的落地且降低了图谱的接受度。本文对与上述schema构建和低资源抽取困难相关的最新技术进展进行了整理和分析,其中包含我们在半自动schema构建方面的实践,同时给出了Document AI和长结构化语言模型在文档级信息抽取上的前沿技术分析和讨论,期望能给同行的研究工作带来一定的启发和帮助。
【引自】万字综述:行业知识图谱构建最新进展
作者:李晶阳[1],牛广林[2],唐呈光[1],余海洋[1],李杨[1],付彬[1],孙健[1]
单位:阿里巴巴-达摩院-小蜜Conversational AI团队[1],北京航空航天大学计算机学院[2]
1. 简介
关系抽取指的是对给定的实体对之间的关系类型进行分类。相较于OpenIE中的不固定类型的关系抽取,本部分所讲的关系抽取统指固定关系类别集合的关系抽取。 ...
信息抽取技术进展【2】 --命名实体识别技术
信息抽取技术进展【2】-- 命名实体识别
【摘要 】领域知识图谱是行业认知智能化应用的基石。目前在大部分细分垂直领域中,领域知识图谱的schema构建依赖领域专家的重度参与,该模式人力投入成本高,建设周期长,同时在缺乏大规模有监督数据的情形下的信息抽取效果欠佳,这限制了领域知识图谱的落地且降低了图谱的接受度。本文对与上述schema构建和低资源抽取困难相关的最新技术进展进行了整理和分析,其中包含我们在半自动schema构建方面的实践,同时给出了Document AI和长结构化语言模型在文档级信息抽取上的前沿技术分析和讨论,期望能给同行的研究工作带来一定的启发和帮助。
【引自】万字综述:领域知识图谱构建最新进展
作者:李晶阳[1],牛广林[2],唐呈光[1],余海洋[1],李杨[1],付彬[1],孙健[1]
单位:阿里巴巴-达摩院-小蜜Conversational AI团队[1],北京航空航天大学计算机学院[2]
1. 简介
命名实体识别(Named Entity Recognition,简称NER),是指识别文本中具有特定含义的实体及类型。常用NER数据集中的实体类型主 ...