快速地理加权回归 (FastGWR)
〖摘 要〗 地理加权回归 (GWR) 是一种广泛使用的工具,用于探索地理空间过程的空间异质性。 GWR 计算特定位置的参数估计值,这使得其校准过程需要大量计算。当前开源 GWR 软件可以处理的最大数据点数是标准桌面上的大约 15,00015,00015,000 个观测值。在大数据时代,这严重限制了 GWR 的使用。为了克服这一限制,我们提出了一种高度可扩展的开源 FastGWR 实现,该实现基于 Python 和消息传递接口 (MPI),可扩展到数百万个观测值的数量级。 FastGWR 优化内存使用以及并行化以显着提高性能。为了说明 FastGWR 的性能,对来自洛杉矶市 Zillow 数据集的大约 130130130 万个单户住宅物业进行了特征房价模型校准,这是将 GWR 应用于这种规模的数据集的首次尝试。结果表明,随着高性能计算 (HPC) 环境中内核数量的增加,FastGWR 呈线性扩展。它还优于当前可用的开源 GWR 软件包,在标准桌面上速度大幅降低——最高可达数千倍。
【原 文】 Li, Z. et al. (2019) ‘Fast Geographically ...
地理加权回归模型
〖摘 要〗 空间异质性是地理学第二定律的核心。从地理信息科学角度,空间异质性主要包含两种类型,一是随空间变化,空间某些变量之间的关系发生了明显变化;二是随空间变化,空间某些变量的统计量(如:均值、方差)会出现平稳或者不平稳的变化。地理加权回归是空间计量学、地理空间统计学中为研究第一种空间异质性(即变量间关系的空间异质性)而提出的工具,在多元变量的空间插值或预测等方面具有重要作用。本文为相关原理的基本介绍。
〖原 文〗 Yamagata, Y. and Seya, H. (eds) (2020) Spatial analysis using big data: methods and urban applications. London, United Kingdom ; San Diego, CA: Academic Press, an imprint of Elsevier (Spatial econometrics and spatial statistics). Chapter 6
1 引言
1.1 全局空间最小二乘回归的问题
在地学空间分析中,nnn 组观测数据通常 ...
一种地理加权人工神经网络 -- GWANN
一种地理加权人工神经网络
【摘 要】 虽然最近的发展在许多方向上扩展了地理加权回归( GWR ),但通常假设因变量和自变量之间的关系是线性的。然而,在实践中,变量往往是非线性关联的。为解决该问题,荷兰乌特勒支大学 Hagenauer 等提出了一种地理加权人工神经网络( GWANNGWANNGWANN )。 GWANNGWANNGWANN 将地理加权与人工神经网络相结合,能够在无假设情况下以数据驱动方式学习复杂的非线性关系。通过已知空间特征的合成数据和真实世界案例研究,作者将 GWANNGWANNGWANN 和 GWR 进行了比较。合成数据的结果表明,当数据之间关系是非线性且空间方差较大时, GWANNGWANNGWANN 算法的性能要好于 GWR 算法,而基于真实数据的结果表明, GWANNGWANNGWANN 算法在实际应用中也可以取得更好的性能。
【原 文】 Hagenauer, J. and M. Helbich ( 2021 ). “A geographically weighted artificial neural network.” International ...