🔥 空间表征学习综述文章
【摘要】无监督文本编码模型最近推动了自然语言处理的实质性进展。其关键思想是使用神经网络将文本中的词转换为基于单词位置及其上下文的向量空间表示( 词嵌入 ),进而用于下游任务的端到端训练。我们在空间分析中看到了惊人的相似情况,即空间分析侧重于将地理对象( 如:POI点 )的绝对位置和空间上下文纳入模型。一个通用的空间表征模型对于许多任务都是有价值的。然而,迄今为止,除了简单地将离散化或前馈网络应用于坐标之外,还没有这样通用的模型存在,并且很少有努力对具有非常不同特征的分布进行联合建模,而这些特征经常出现在地理信系统数据中。神经科学领域诺贝尔奖得主的研究表明,哺乳动物的网格细胞(Grid Cell)提供了一种多尺度、周期性的位置编码表示,对于动物识别位置和寻找路径至关重要。因此,我们提出了一个称为 Space2Vec 的空间表征学习模型来编码地点(Place)的绝对位置和空间关系。我们对两个不同任务在两个真实世界的地理数据上进行实验:1)在给定位置和上下文的情况下预测 POI 点的类型;2)利用POI点的地理位置进行图像分类。结果表明,由于Space2Vec具有多尺度表示能力, ...
空间表征学习之Tile2Vec
p{text-indent:2em}
空间表征学习之Tile2Vec
【摘要】
【原文】
【DOI】
空间表征学习之Space2Vec
空间表征学习之Space2Vec
【摘要】无监督文本编码模型最近推动了自然语言处理的实质性进展。其关键思想是使用神经网络将文本中的词转换为基于单词位置及其上下文的向量空间表示( 词嵌入 ),进而用于下游任务的端到端训练。我们在空间分析中看到了惊人的相似情况,即空间分析侧重于将地理对象( 如:POI点 )的绝对位置和空间上下文纳入模型。一个通用的空间表征模型对于许多任务都是有价值的。然而,迄今为止,除了简单地将离散化或前馈网络应用于坐标之外,还没有这样通用的模型存在,并且很少有努力对具有非常不同特征的分布进行联合建模,而这些特征经常出现在地理信系统数据中。神经科学领域诺贝尔奖得主的研究表明,哺乳动物的网格细胞(Grid Cell)提供了一种多尺度、周期性的位置编码表示,对于动物识别位置和寻找路径至关重要。因此,我们提出了一个称为 Space2Vec 的空间表征学习模型来编码地点(Place)的绝对位置和空间关系。我们对两个不同任务在两个真实世界的地理数据上进行实验:1)在给定位置和上下文的情况下预测 POI 点的类型;2)利用POI点的地理位置进行图像分类。结果表明,由于Sp ...
空间表征学习之Place2Vec
p{text-indent:2em}
空间表征学习之Place2Vec
【摘要】理解、表示和推理POI点的类型是地理信息检索、推荐系统、地理知识图谱以及研究一般城市空间的重要方面(例如:从用户生成内容中提取功能性或模糊性认知区域的任务)。这些任务的先决条件之一是能够捕捉POI点类型之间的相似性或相关性。直觉上,当人们搜索汽车维修点时,即使没有精确的匹配结果,返回汽车美容店甚至加油站仍然可能满足一些用户需求,但返回天文馆则不会。也就是说,POI点类型的层次结构常用于扩展或者联想查询。但大多数现有POI点类型的层次结构较浅,并且往往结构是人为设计确定的,造成在某些特征方面可能密切相关的POI点类型被分开了,进而影响了扩展或联想查询的效果。这就引出了如何从数据中学习POI点类型表示的问题。近年,自然语言处理领域的词嵌入(如Word2Vec)对于词相似性表征发挥了重要作用,为POI点类型的表征提供了思路。但地理空间结构(如POI点类型间的相互作用)与语言学有很大不同,不能直接套用。本文提出了一种新方法来增强POI点类型的空间上下文,使用距离分割和信息论方法来生成嵌入。我们证明,该工 ...
非结构化文本的地理定位
非结构化文本的地理定位
【摘要】根据前文介绍,地理信息抽取是构建地理知识图谱的核心,而对非结构文本的地理定位是地理信息抽取技术的核心。本文对非结构文本的地理定位研究现状进行了梳理。鉴于国内地理信息科学和计算机信息科学为两个学科,而地理定位属于跨学科、研究难度偏大的命题,国内比较深度或成体系的研究较少,因此本文主要针对国际相关研究情况。
【原文】
【DOI】
1. 文本中的地理引用
地理引用(Geoeferences)
文本中对位置的指称(形式上为文本片段)被称为地理引用,也称位置引用、位置标识、地理标签。
**地理引用的案例:**地理引用的形式多样,例如,以下形式都可以定位北京大学:
北京市海淀区颐和园路5号 – 北京大学的通信地址
北京大学 – 北京大学的地名
100871 – 北京大学的中国邮政编码
X8P4+Q8 – 北京大学的谷歌开放位置码
39.986913,116.3036799 – 北京大学的经纬度
此外,还有很多在专业领域编制的具有空间位置含义的编码,如:北京大学的不动产单元登记码、北京大学的城市管理网格码等,均 ...
地理知识图谱「 2 」-- 地理信息抽取技术
地理信息抽取–未来地理信息科学中的皇冠
摘要:
根据前文,地理知识图谱主要分为两个大的研究领域或流派,其中地理知识图谱以领域地理知识库建设为重点,其中利用地理信息抽取技术完善、丰化知识库内容是较为核心的技术点。本文是对地理信息抽取技术的概览,希望有助于对该技术方向的了解和把握。
1. 位置搜索对地理信息抽取的现实性需求
互联网领域中大部分信息搜索查询中明确包含地理搜索词
例如:以地名的形式(Gan等人,2008年;Aloteibi和Sanderson,2014年)
80%的互联网用户会利用位置搜索引擎获取本地商业服务、产品或其他领域知识
在移动应用蓬勃发展的当下,基于位置的知识服务成为核心功能
以用户当前或预测位置为基础提供实时地理知识图谱上下文信息(Reichenbacher等人,2016)。
2. 地理信息抽取的必要性
信息和知识服务的现状
搜索引擎领域:尽管在位置搜索上投入了大量资金,但大部分检索结果局限于商业目录中的信息
知识服务领域:大量领域知识有待于数字化、信息化,并最终转换为知识内容提供服务
机遇:
随着Web2.0/3 ...
地理知识图谱与地理空间语义网
地理知识图谱与地理空间语义网
地理知识图谱的确切概念很难完整定义,从目前技术发展脉络来看,国内外主要存在两个技术领域或流派:地理空间语义网和地理知识图谱。
1. 地理空间语义网
(1)参与研究的主要群体
地理空间信息科学领域的专家和团体
(2)研究重点
沿用语义网的理念,在开放世界假设基础上,面向地理空间数据的可共享、可交换、互操作性、人机共同认知和理解等问题展开研究
(3)主要研究内容
地理空间本体的设计和模式
地理空间数据服务向地理空间本体知识服务转换的方法
不同地理空间知识库之间的本体对齐和实体对齐方法
社会感知/传感器网络等新型地理空间感知器知识库的建立
地理空间本体库的推理
…
(4)代表性研究机构
暂略…
2. 地理知识图谱
(1)参与研究的主要群体
计算机信息科学领域的专家和团体
(2)研究重点
其沿用知识图谱的理念,面向地理空间知识图谱的构建、存储、丰化、推理和服务问题
(3)主要研究内容
领域地理空间图谱本体建模方法
*领域地理空间数据库存储和优化
非结构化文本领域知识的地理信息抽取
非结构化文本领域知识的自动地理编码
领域 ...
地理知识图谱awesome list
地理知识图谱相关研究领域总结
综述性文章和书籍
文章
(1)地理空间语义网
Janowicz, K. and Scheider, S., Pehle, T., and Hart, G. (2012): Geospatial Semantics and Linked Spatiotemporal Data - Past, Present, and Future (editorial). Semantic Web 3(4), pp. 321-332.
Janowicz, K. and Hitzler, P. (2012): The Digital Earth as Knowledge Engine (editorial). Semantic Web Journal, 3(3), pp. 213-221.
Janowicz, K. and Hitzler, P. (2015): Geospatial Semantic Web. The International Encyclopedia of Geography: People, the Earth, Environ ...