序贯蒙特卡洛与粒子滤波
〖摘要〗设计一个高效的迭代式模拟采样算法可能很困难,但对其进行推断并且监控其收敛性相对容易。本文首先给出了我们推荐的推断策略(遵循 Gelman et al., 2003 的第 11.10 节),并解释了推荐原因;然后用我们最近研究的一个关于 “民意调查数据分层模型拟合” 的案例进行说明。
〖原文〗 Inference from Simulations and Monitoring Convergence, Handbook of Markov Chain Monte Carlo, 2011
1 背景
现实世界的数据分析通常需要在仅给出对某些相关可观测量的序列观测的情况下估计未知量。在贝叶斯框架中,人们通常掌握模型的一些先验知识:不可观测兴趣量的先验分布和似然函数(将可观测量与不可观测量关联)。不可观测值的后验分布可以使用贝叶斯定理计算,这允许人们对未观测到的量进行推断。
在某些情况下,按顺序处理观测结果是很自然的。这些案例是本文重点,例如,不断有新数据实时输入的雷达跟踪或金融估算工具等在线应用,尝试更新之前形成的后验分布,肯定比从头开始重新计算更容易。
如果上述观测数据可 ...