空间回归模型综述
摘 要
参 考
1 概述
空间回归模型是按照空间区位研究变量之间关系的主要数学工具之一。根据空间回归模型是否同质(或反之是否异质,可以简单理解为模型参数是否会随空间位置变化而变化 ),可以将空间回归模型划分为 全局空间回归模型 和 局部空间回归模型。其中:
全局空间回归模型以 空间依赖性 研究为主体,主要探究的是不同变量、误差项之间存在的空间交互效应;
局部回归模型则相对复杂,它不仅要研究变量、误差项之间的空间交互效应,还要研究模型本身( 通常指 模型结构 和 模型参数 )的空间变化规律,探究的重点是 空间异质性。
flowchart LR
A[空间回归模型]---B{变系数检验}
B---|否|C01[全局空间回归]
B---|是|C02[局部空间回归]
C01---D01[空间滞后模型]
C01---D02[空间误差模型]
C01---D03[空间杜宾模型]
C01---D05[其他模型...]
D01---F01[模型参数不随空间位置变化]
D01---F01
D02---F01
D03---F01 ...
🔥 空间表征学习综述文章
【摘要】无监督文本编码模型最近推动了自然语言处理的实质性进展。其关键思想是使用神经网络将文本中的词转换为基于单词位置及其上下文的向量空间表示( 词嵌入 ),进而用于下游任务的端到端训练。我们在空间分析中看到了惊人的相似情况,即空间分析侧重于将地理对象( 如:POI点 )的绝对位置和空间上下文纳入模型。一个通用的空间表征模型对于许多任务都是有价值的。然而,迄今为止,除了简单地将离散化或前馈网络应用于坐标之外,还没有这样通用的模型存在,并且很少有努力对具有非常不同特征的分布进行联合建模,而这些特征经常出现在地理信系统数据中。神经科学领域诺贝尔奖得主的研究表明,哺乳动物的网格细胞(Grid Cell)提供了一种多尺度、周期性的位置编码表示,对于动物识别位置和寻找路径至关重要。因此,我们提出了一个称为 Space2Vec 的空间表征学习模型来编码地点(Place)的绝对位置和空间关系。我们对两个不同任务在两个真实世界的地理数据上进行实验:1)在给定位置和上下文的情况下预测 POI 点的类型;2)利用POI点的地理位置进行图像分类。结果表明,由于Space2Vec具有多尺度表示能力, ...
➀ 隐变量模型综述
〖摘要〗隐变量模型是将一组可观察变量与一组隐变量建立关联的统计模型。本文对隐变量模型进行了概述:首先介绍了通用模型并讨论了各种推断方法;之后,介绍了几种比较常用的情况,包括:『隐类别模型 Latent Class Model 』 (也称『混合物模型 Mixture Model 』)、『混合模型(Mixed Model)』等;我们将这些模型应用于具有简单结构的相同数据集,并进行了结果比较和优缺点讨论;此外,本文还说明了包括『潜在结构模型』在内的若干问题;最后,我们讨论了模型扩展和应用,强调了在应用隐变量模型时经常被忽视的几个问题。
〖原文〗Modeling Through Latent Variables, Annual Review of Statistics and Its Application
〖作者〗Geert Verbeke, Geert Molenberghs,比利时鲁汶天主教大学,
〖时间〗2017
〖DOI〗10.1146/annurev-statistics-060116-054017
p{text-indent:2em}
1. 概述
目前在统计实践中使用 ...
模型平均(Model Averaging)
模型比较(Model Comparison)
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
con ...
GeoAI 的近期研究总结与思考
【摘 要】本文摘自武汉大学学报,作者在文章中列举了大量GeoAI领域的文献参考,值得收藏。尤其是梳理和总结了当前5个主要研究热点方向,并列出了最近急迫需要解决的3个方面挑战。
【原 文】高松,地理空间人工智能的近期研究总结与思考,武汉大学学报,DOI:10.13203/j.whugis20200597
1 GeoAI 的发展历史简介
(1)GeoAI背景
人工智能(AI)领域的技术进步给地理空间相关领域研究的智能化发展和融合创新带来了新机遇和新挑战。
近期快速发展的主要动力来自于深度学习模型和开发框架的快速发展、产业化的日趋成熟、各行业领域大数据的爆发、计算机硬件计算性能不断升级,进而可以支持在很短的时间内训练和部署人工智能模型、支持数据驱动的智能化决策和产业变革
(2)什么是GeoAI?
地理空间人工智能(GeoAI)是地理空间科学与人工智能相结合的交叉学科研究方向
GeoAI通过研究与开发机器的空间智能,提升对于地理现象和地球科学过程的动态感知、智能推理和知识发现能力
GeoAI寻求解决人类和地球环境系统相互作用中的重大科学和工程问题
比如:人口迁移预测、复杂条 ...