空间数据的贝叶斯分层建模
【摘 要】由于空间数据的复杂性,使其统计建模非常困难。分层建模方法由于能够对模型进行分解,从而使建模和推断变得更具可操作性,因此在空间统计学领域得到快速应用和发展。而本文正是围绕空间数据的分层建模方法展开的。文中涉及通用分层建模方法、地统计中的分层建模、广义线性模型的分层建模等内容,以及相应的推断问题。本文内容摘自 Gelfand 的 《空间统计手册》第七章。
【原 文】 Gelfand, A.E. et al. (2010), Handbook of spatial statistics (chapter 7). CRC press.
7.1 简介
在空间统计中,人们通常必须在存在复杂过程、多个数据源、参数化不确定性和不同程度的科学知识的情况下开发统计模型。人们可以从联合或条件的角度来处理这些复杂的问题。虽然从联合角度考虑过程可能很直观,但这种方法可能对统计建模提出严重挑战。例如,可能很难为相关空间数据集指定联合多元依赖结构。将此类联合分布分解为一系列条件模型可能会容易得多。例如,考虑以近地表环境空气温度为条件的近地表臭氧过程(尤其是在夏季)比同时考虑臭氧和温度过程更简 ...
空间过程的贝叶斯建模分析方法综述
【阅读建议】 本文重点介绍点参考空间数据的贝叶斯建模和分析方法,尤其是贝叶斯分层建模框架。点参考数据(也被称为地统计数据)主要指在固定空间位置观测到的随机变量数据。过去二十年中,此类数据在空间和时间上的收集量已经大大增加,随之而来的是分析此类数据的大量方法。本文尝试对其中的贝叶斯方法进行回顾。此类分析方法的好处是能够进行全面而准确的推断,并对不确定性进行适当评估。地统计建模的测站数据虽然比较复杂,涉及单变量和多变量、连续型和类别型、静态和动态以及大量长时间观测结果等,但在贝叶斯分层模型框架内,可以统一进行描述和阐释。本文另一亮点在于对大规模观测数据的建模问题做了综述,介绍了降秩方法(高斯预测过程模型)和近邻方法(近邻高斯过程模型)两类主要的处理策略。
【引文信息】 A. E. Gelfand and S. Banerjee, “Bayesian Modeling and Analysis of Geostatistical Data,” Annu Rev Stat Appl, vol. 4, pp. 245–266, 2017, doi: 10.1146/annurev-s ...