高斯场和非高斯场的随机偏微分方程方法:10 年回顾
【摘 要】 高斯过程和随机场有着悠久的历史,包含了表示空间和时空相关结构的很多方法,例如:协方差函数、谱表示、再生核希尔伯特空间、基于图的模型等。本文介绍了随机偏微分方程方法(SPDE)如何通过 Hilbert 空间投影,将 Matern 协方差模型与其中几种方法建立起联系,并且每种联系在不同情况下都非常有用。除了主要思想的概述之外,本文还讨论了一些重要的扩展、理论、应用和其他新发展。这些方法包括:马尔可夫模型、非马尔可夫模型、非高斯随机场、非平稳场、任意流形上的时空场等,以及实际计算需要考虑的因素。 【原 文】 Lindgren, F., Bolin, D. and Rue, H. (2022) ‘The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running’, Spatial Statistics, 50, p. 100599. Available at: https://doi.org/10.1016/j.spasta.2022.100599. 1...
SPDE: 高斯场和高斯马尔可夫随机场之间的明确联系
【摘 要】 连续索引的高斯场 (GF) 是空间统计建模和地统计学中最重要的组成部分,通过协方差函数的定义给出了场性质的直观解释。在计算方面,高斯场受到大 $n$ 问题限制,因为密集矩阵的分解计算成本是维度的三次方($\mathcal{O}(n^3)$)。尽管当前计算能力处于历史最高水平,但这一事实似乎仍然是许多应用中的瓶颈。与高斯场同样中要的,还有一类离散索引的高斯马尔可夫随机场 (GMRF),其马尔可夫性质导致精度矩阵的稀疏性,从而使我们可以使用稀疏矩阵的数值算法。对于 $\mathbb{R}^2$ 中的场, GMRF 仅使用了一般算法所需时间的平方根($\mathcal{O}(\sqrt{n^3})$)。 GMRF 由其完整条件分布分布定义,但在这种参数化形势下,其边缘分布性质并不明确。在本文中,我们展示了:对于 Matérn 类型的某些高斯场,(线性)随机偏微分方程的近似随机弱解,可以为 $\mathbb{R}^d$ 上的任何三角形剖分提供在高斯场和 GMRF 之间的显式链接,进而可以将该高斯场表示为基函数的形式。其好处是:我们既能使用高斯场进行建模,又能够利用...