➀ 基于实例的方法: 核密度估计( KDE )
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 KDE 模型
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'') ...
➀ 基于实例的方法:KNN 模型
【摘要】 高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 基本原理、超参优化、高维输入等问题。
【see also】 《高斯过程的可视化探索》; 《稀疏高斯过程及其推断》; 《深度高斯过程》
p{text-indent:2em;2}
1 KNN 模型
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'') ...
哈密顿蒙特卡洛(HMC)方法
哈密顿蒙特卡洛( HMC )采样方法
〖摘要〗快速给出下一个状态的提议值是 MCMC 方法的关键环节。对于状态有限的离散概率质量函数而言,可以采用随机游走的方式选择下一个状态的提议值,然后使用 Metropolis 更新步骤;但对于连续的概率密度函数而言, 随机游走方式显然不利于快速遍历状态空间。哈密顿蒙特卡洛方法利用 Hamilton 动力学的可逆性、能量守恒、体积保持等特性,为构造马氏链提供了一种快速生成提议状态的方法,该方法与 MCMC 中的 Metropolis 更新(或其他更新方法)步骤结合,可以快速生成给定概率分布的样本。
〖原文〗 Radford M. Neal (2011), MCMC Using Hamiltonian Dynamics, Handbook of Markov Chain Monte Carlo.
1 概述
马尔可夫链蒙特卡罗 (MCMC) 起源于 Metropolis 等人 的经典论文 (1953)。它被用于模拟理想化状态下分子系统的状态分布。不久之后,引入了另一种分子模拟方法( Alder 和 Wainwright,1959 年),其 ...
能量模型概览
【摘要】
【原文】 Murphy, Kevin P. Chapter 24 of Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. probml.ai.
【参考】
https://github.com/yataobian/awesome-ebm
1 概述
变分自编码器、自回归模型和归一化流等深度生成模型,都可以用有向图模型来表述,在这些模型中,使用局部归一化的分布一步一步生成数据。但在某些情况下,根据有效样本必须满足的一组约束来指定分布,可能比定义数据生成过程更容易。这可以使用无向图形模型来完成。
基于能量的模型( Eneragy-based Models, EBM )可以被写成 Gibbs 分布,如下所示:
pθ(x)=exp(−Eθ(x))Zθp_{\boldsymbol{\theta}}(\mathbf{x}) = \frac{\exp(- \mathcal{E}_{\boldsymbol{\theta}}(\mathbf{x}))}{Z_{\boldsymbol{\theta}} ...
归一化流概览
【摘要】 归一化流是一种用于定义可表示性概率分布的通用机制,它只需要指定一个基分布和一系列双射变换,就能够得到更具有表达能力的概率分布。近年来,从提高表达能力到扩展其应用方案法,出现了大量关于归一化流的工作。我们认为该领域现在已经成熟了,需要一个公共的统一视角。本文试图通过概率建模和推断视角来描述流。本文特别强调流设计的基本原则,并将讨论模型表达能力与计算代价权衡等基本主题。本文还通过将流与更一般的概率转换相关联,来拓宽流的概念框架。最后,总结了流在生成模型、近似推断和监督学习等任务中的应用。
【原文】Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing Flows for Probabilistic Modeling and Inference (593 citation(s); arXiv:1912.02762). arXiv. http://arxiv.org/abs/1912.02762
【参考】
I. ...
隐狄利克雷分配模型
【摘 要】
自回归模型概览
【摘要】
【原文】 Murphy, Kevin P. Chapter 22 of Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. probml.ai.
【参考】
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mi\boldsymbol{x}_{t}ure Likelihood and Other Modifications
https://github.com/openai/pixel-cnn
1 概述
根据概率链式法则,我们可以写出 T 个变量上的任意联合分布如下:
p(x1:T)=p(x1)p(x2∣x1)p(x3∣x2,x1)p(x4∣x3,x2,x1)…=∏t=1Tp(xt∣x1:t−1)p\left(\boldsymbol{x}_{1: T}\right)=p\left(\boldsymbol{x}_1\right) p\left(\boldsymbol{x}_2 \mid \boldsymbo ...
隐马尔可夫模型
【摘 要】 如果存在具有棘手后验的连续型隐变量和大数据集,我们如何在有向概率图模型中进行有效的推断和学习? 本文引入了一种随机变分推断和学习算法。该算法能够在一些轻度差异化(甚至棘手)的情况下工作,并且能够扩展到大型数据集。本文的贡献有两个:首先,证明了重参数化方法可以产生一个对变分下界的无偏估计,并且该估计方法能够使用随机梯度方法做优化。其次,对于有连续型隐变量的独立同分布数据集,我们利用重参数化的变分下界估计,成功地为棘手后验拟合了近似的推断模型。理论优势最终反映在了实验结果中。
1 介绍
当模型中存在具有棘手后验的连续型隐变量和/或参数时,我们如何使用有向概率图模型进行近似推断和学习呢?
在实践中,变分推断方法可以采用优化方法对棘手后验做近似推断。目前常用的平均场变分推断方法,利用指数族分布来构建一个近似的变分下界,但该方法中需要期望(相对于近似后验)的解析解,这在一般情况下很难适用。
关于变分推断的知识参阅 初始变分推断
贝叶斯方法需要对分布作出推断,由于精确推断通常非常棘手,因此近似推断方法得到了广泛应用。变分推断方法作为其中一种近似推断方法,其核心理念是:
...
3️⃣ 变分自编码器原始论文
【摘 要】 如果存在具有棘手后验的连续型隐变量和大数据集,如何在有向概率图模型中进行有效的推断和学习? 本文引入了一种随机变分推断和学习算法。该算法能够在一些轻度差异化(甚至棘手)的情况下工作,并且能够扩展到大型数据集。本文的贡献有两个:首先,证明了重参数化技巧可以得到对变分下界的无偏估计,并且可用于随机梯度的优化。其次,对于有连续型隐变量的独立同分布数据集,我们利用重参数化的变分下界估计,成功地为棘手后验拟合了近似的推断模型(注:利用摊销推断思想,将传统棘手的局部隐变量推断问题转变成了神经网络预测问题)。理论优势最终反映在了实验结果中。
【原 文】 Kingma, D.P. and Welling, M. (2014) ‘Auto-Encoding Variational Bayes’. arXiv. Available at: http://arxiv.org/abs/1312.6114 (Accessed: 14 October 2022).
1 介绍
当模型中存在具有棘手后验的连续型隐变量和/或参数时,我们如何使用有向概率图模型进行近似推断和学习呢?
在实践中, ...
(高斯)混合模型
【摘 要】 高斯混合模型(GMM)用多个高斯概率密度函数(正态分布曲线)精确地量化变量分布,是将变量分布分解为若干基于高斯概率密度函数(正态分布曲线)分布的统计模型。GMM是一种常用的聚类算法,一般使用期望最大算法(Expectation Maximization,EM)进行估计。
1 问题的提出
高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上 GMM 可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同分布的情况(或者是同一类分布但参数不一样,或者是不同类型的分布,比如正态分布和伯努利分布)。
如图1,图中的点在我们看来明显分成两个聚类。这两个聚类中的点分别通过两个不同的正态分布随机生成而来。但是如果没有GMM,那么只能用一个的二维高斯分布来描述图1中的数据。图1中的椭圆即为二倍标准差的正态分布椭圆。这显然不太合理,毕竟肉眼一看就觉得应该把它们分成两类。
这时候就可以使用GMM了!如图2,数据在平面上的空间分布和图1一样,这时使用两个二维高斯分布来描述图2中的数据,分别记为 和 。 图中的两个椭圆分别是这 ...