最大似然、最大后验与贝叶斯推断
【摘 要】在机器学习和统计学习领域,最大似然、最大后验和贝叶斯推断是参数估计和预测最为常见的三种方法,堪称三座圣杯。本文从掌握证据(观测数据)出发,分别讨论了三种方法的原理、特点以及区别,而且内容极为简明易懂,是了解上述三个概念不可多得的好教材。该文是普渡大学机器人视觉实验室的自编教程,值得收藏。
【原 文】
(1)Kak, A. (2014) ‘ML, MAP, and Bayesian—the holy trinity of parameter estimation and data prediction’, An RVL Tutorial Presentation at Purdue University.
(2)Kak, A. (2014) ‘Monte Carlo integration in bayesian estimation’.
最大似然法与受限最大似然法的比较
【摘 要】 当混合效应模型中既包含固定效应又包含随机效应时,参数估计是否应该采用最大似然法呢? 如果不使用最大似然法,那应当使用什么方法呢?本文介绍了在此应用场景中最大似然法存在的问题,即低估随机效应(方差)分量并导致固定效应的一类错误膨胀,并简单介绍了响应的处置方法:受限最大似然法和 KR 校正法。作者参考了 McNeish Daniel 的一篇文章,用人类能看懂的非数学语言介绍了 MLE、REML、KR 三者的核心以及背后的统计思想。
【原 文】 Carnap, 最大似然估计和限制性极大似然估计
【参 考】Daniel McNeish (2017): Small Sample Methods for Multilevel Modeling: A Colloquial Elucidation of REML and the Kenward-Roger Correction, Multivariate Behavioral Research, DOI: 10.1080/00273171.2017.1344538
1 最大似然估计
当混合效应模型中同时包含固定效应和随机效应( ...
最大似然法与 EM 及变分推断的关系
【摘 要】 最大似然方法、期望最大化、变分推断三种方法,都可以用于对模型参数进行推断,但三者之间在应用场景上存在着显著区别,但也存在一定的关系。在知乎上看到一篇博文,内容貌似合理,但有更多概念是错误的,感觉有必要系统地梳理一下。
【参 考】 Reid, N. (2010) ‘Likelihood inference: Likelihood inference’, Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), pp. 517–525. Available at: https://doi.org/10.1002/wics.110.
【原 文】 https://zhuanlan.zhihu.com/p/378988804
1 建模场景设置
当建模的场景中存在混合效应时,通常会分别对 固定效应 和 随机效应 进行建模。例如,在空间统计场景中,通常将观测建模为如下形式:
Y(s)=X(s)β+ηϕ(s)+ϵ(s)\mathbf{Y}(\mathbf{s}) = \mathbf{X}(\mathbf{s ...
经验贝叶斯方法简介
1 概念理解
传统贝叶斯方法需要事先指定参数(或隐变量)的先验分布以及模型的似然,而后利用已知数据对先验进行更新,最终得到后验分布。当先验分布完全未知时,推断会受到一定的影响。如果在创建后验概率分布之前,先利用某些方法来估计先验概率分布的参数,将使推断得到优化,而这就是经验贝叶斯方法的主要思想。
经验贝叶斯方法是 “在构建后验概率分布之前,估计和更新先验概率分布参数(即超参数)的方法集合”。该技术仍然遵循贝叶斯统计模型,但增加了估计先验概率分布的过程。
经验贝叶斯方法是一种统计推断过程,该方法根据经验数据估计先验概率分布。 此方法与标准贝叶斯方法形成对比,标准贝叶斯方法在观察到任何数据之前,先验分布都是固定的。经验贝叶斯可被视为对分层模型(Hierarchical Model)的完全贝叶斯处理的一种近似,只是其中最高层次级别的参数被设置为其最可能的值,而不是像完全贝叶斯处理一样通过积分获得。
经验贝叶斯也称为 最大边缘似然法,到目前仍然是一种设置超参数的便捷方法,但自 2000 年代以来,随着性能良好的计算技术的可用性不断提高,它已逐步被完全贝叶斯分层分析方法所取代。
(1 ...
贝叶斯模型比较与选择索引帖
待完善
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
贝叶斯优化索引帖
待完善
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
变分自编码器索引帖
#refplus, #refplus li{
padding:0;
margin:0;
list-style:none;
};
document.querySelectorAll(".refplus-num").forEach((ref) => {
let refid = ref.firstChild.href.replace(location.origin+location.pathname,'');
let refel = document.querySelector(refid);
let refnum = refel.dataset.num;
let ref_content = refel.innerText.replace(`[${refnum}]`,'');
tippy(ref, {
content: ref_content,
...
🔥 蒙特卡洛推断方法索引帖
1. 蒙特卡洛原理
《蒙特卡洛方法原理》
2. 基础的随机采样方法
《直接采样、拒绝采样与重要性采样》
3. 马尔可夫链门特卡罗(MCMC)方法
《一篇文章读懂蒙特卡罗采样》
MCMC 采样方法编程实战
4. MCMC 的加速采样
《主要的 MCMC 加速方法》
专题:
《哈密顿蒙特卡洛(HMC)方法》
《不调头采样(NUTS)方法》
《模拟退火》
5. 序贯蒙特卡洛(SMC)方法
《卡尔曼滤波》: 基于高斯似然假设和线性系统假设,后验概率分布具有封闭形式,本身不需要蒙特卡洛方法。在此主要用于和粒子滤波进行比较。
《序贯蒙特卡洛与粒子滤波》:非高斯似然、非线性等更为复杂的系统,后验概率分布没有封闭形式解,因此只能通过蒙特卡洛模拟的方式近似后验概率分布。序贯蒙特卡罗方法为复杂动态系统的粒子滤波奠定了基础。
6. 可扩展的蒙特卡洛方法
随机梯度 MCMC 推断( SGMCMC ): 当数据规模较大时,蒙特卡洛方法能否适用?在大数据分析场景中,这个问题困扰了很多人。
#refplus, #refplus li{
padding:0;
...
🔥 组合似然法概述
【摘 要】组合似然法是用于超大规模高斯随机场高效计算的主要方法之一,本文提供了对组合似然理论和应用的最新发展调查。论文考虑了一系列应用领域,包括地统计学、空间极值、时空模型、集群和纵向数据以及时间序列等。考虑到 Larribe 和 Fearnhead (2011) 已经发表了在统计遗传学方面的综述论文,本文省略了这一重要应用领域。本文重点介绍了组合似然理论发展、组合似然推断的效率和鲁棒性等知识现状。
【原 文】 Varin, C., Reid, N. and Firth, D. (2011) ‘AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS’, Statistica Sinica, 21(1), pp. 5–42.
1 简介
组合似然是通过将若干似然分量相乘得出的一个推断函数;所使用的似然分量集合通常由应用上下文决定。因为每个个体似然分量都是条件密度(或边缘密度,根据应用而定),所以从复合对数似然的导数得出的估计方程,是一个无偏估计方程。无论这些个体似然分量是否相互独立,根据其乘法所得到的推断函数都会包含所指定模型的似然性质。
本文回 ...
似然函数与基于似然的推断
【摘 要】 描述了似然函数在贝叶斯和非贝叶斯推断中的重要作用。回顾了将基于似然的方法扩展到更复杂问题设置时相关的几个主题,包括几类比较著名的似然扩展:剖面似然、组合似然(伪似然)、准似然、半参数和非参数似然、经验似然等。
【原 文】 Reid, N. (2010) ‘Likelihood inference: Likelihood inference’, Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), pp. 517–525. Available at: https://doi.org/10.1002/wics.110.
1 介绍
参数模型的似然(也称似然函数) L(θ;y)\mathcal{L}(\theta;y)L(θ;y) 正比于模型的概率密度函数 f(y;θ)f(y;\theta)f(y;θ)。在观测数据 yyy 不变的情况下,似然被视为模型参数的函数。在机器学习应用中(此类应用中,对新实例的预测通常比对模型参数推断更重要),似然的对数负值(即对数似然,log likelihood)常 ...