3.10 文献笔记
3.10 文献笔记¶
线性回归在很多统计教材中都有讨论,比如,Seber (1984)1, Weisberg (1980)2 以及 Mardia et al. (1979)3。岭回归由 Hoerl and Kennard (1970)4提出,而 lasso 由Tibshirani (1996)5提出。几乎在同时,lasso形式的惩罚在信号处理中的 basis pursuit 方法中被提出(Chen et al., 1998)6。最小角回归过程由 Efron et al. (2004)7等人提出;与这有关的是早期 Osborne et al. (2000a)8和 Osborne et al. (2000b)9的homotopy过程。他们的算法也利用了在 LAR/lasso 算法中的分段线性,但是缺少透明度 (transparency)。向前逐步准则在 Hastie et al. (2007)10中进行了讨论。Park and Hastie (2007)11 发展了类似用于广义回归模型的最小角回归的路径算法。偏最小二乘由 Wold (1975)12提出。收缩方法的比较或许可以在 Copas (1983)13 和 Frank and Friedman (1993)14中找到。
note “weiya注” 3.8节讲lasso及相关的路径算法一节中还有很多文献。
- 1
Seber, G. (1984). Multivariate Observations, Wiley, New York.
- 2
Weisberg, S. (1980). Applied Linear Regression, Wiley, New York.
- 3
Mardia, K., Kent, J. and Bibby, J. (1979). Multivariate Analysis, Academic Press.
- 4
Hoerl, A. E. and Kennard, R. (1970). Ridge regression: biased estimation for nonorthogonal problems, Technometrics 12: 55–67.
- 5
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B 58: 267–288.
- 6
Chen, S. S., Donoho, D. and Saunders, M. (1998). Atomic decomposition by basis pursuit, SIAM Journal on Scientific Computing 20(1): 33–61.
- 7
Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression (with discussion), Annals of Statistics 32(2): 407–499.
- 8
Osborne, M., Presnell, B. and Turlach, B. (2000a). A new approach to variable selection in least squares problems, IMA Journal of Numerical Analysis 20: 389–404.
- 9
Osborne, M., Presnell, B. and Turlach, B. (2000b). On the lasso and its dual, Journal of Computational and Graphical Statistics 9: 319–337.
- 10
Hastie, T., Taylor, J., Tibshirani, R. and Walther, G. (2007). Forward stagewise regression and the monotone lasso, Electronic Journal of Statistics 1: 1–29.
- 11
Park, M. Y. and Hastie, T. (2007). l 1 -regularization path algorithm for generalized linear models, Journal of the Royal Statistical Society Series B 69: 659–677.
- 12
Wold, H. (1975). Soft modelling by latent variables: the nonlinear iterative partial least squares (NIPALS) approach, Perspectives in Probability and Statistics, In Honor of M. S. Bartlett, pp. 117–144.
- 13
Copas, J. B. (1983). Regression, prediction and shrinkage (with discussion), Journal of the Royal Statistical Society, Series B, Methodological 45: 311–354.
- 14
Frank, I. and Friedman, J. (1993). A statistical view of some chemometrics regression tools (with discussion), Technometrics 35(2): 109–148.